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INTERNATIONAL JOURNAL OF NUMERICAL MODELLING . ELECTRONIC NETWORKS, DEVICES AND FIELDS,
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EDITORIAL

The direct time-domain modeliing of electromagnetic fields and high-frequency circuits meets with
growing interest. Modern powerful computers make feasible the applications of time-domain
methods in the modelling of electromagnetic fields and networks. The advantages of time-domain
methods are their high flexibility, their potential to include non-linear effects and time-dependent
parameters, and their transparency with respect to concepts and algorithms. Time-domain analysis
elucidates the physical principles underlying the phenomena and supports a creative design of
circuits and systems. For these reasons, time-domain methods are of high interest for the develop-
ment of CAD tools for the modelling of microwave and millimetre-wave integrated circuits, and
broad-band microwave devices, antennas, circuits and systems. The combination of field concepts
and network concepts allows the segmentation of complex structures and to apply full wave
analysis to the segments.

This special issue is the second of three parts comprising contributions to the workshop on the
German IEEE MTT/AP Joint Chapter and the German IEEE CAS Chapter on Discrete Time
Domain Modelling of Electromagnetic Fields and Networks on 24 and 25 October 1991 at the
Technische Universitidt Miinchen. The first part was published in vol. 5. no. 3 of the Journal. The
purpose of this workshop, organized by Peter Russer and Josef Nossek under the sponsorship of
the European Research Office (ERO) of the US Army. was to bring together researchers dealing
with time-domain simulation and transient phenomena in fields and networks.

PETER RUSSER
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EFFICIENT ANALYTICAL-NUMERICAL MODELLING OF
ULTRA-WIDEBAND PULSED PLANE WAVE SCATTERING
FROM A LARGE STRIP GRATING

LAWRENCE CARIN AND LEOPOLD B. FELSEN

Weber Research Institute/ Electrical Engineering Depariment, Polytechnic Universuy, Farmingdale. NY [1735, U.S.A.

SUMMARY

Ultra-wideband (UWB) pulsed plane wave scattering from a large but finite strip grating in free space is
analysed in the frequency domain via decomposition into piane wave spectra, impiemented numencally by
the method of moments, and then inverted into the time domain (TD). To make this procedure practical
under UWB conditions, closed form expressions are derived for interaction integrals nvolving widely
separated expansion and testing functions. These closed forms are based on a judicious choice of the basis
functions, and on asymptotic methods for reducing the integrals. Although large separation distances are
assumed, the expressions have been found to be accurate for separations as small as -1 wavelengths. The
TD self terms can also be evaluated efficiently. To test the frequency domain algorithm. comparisons are
made with available data in the literature for surface currents and far-field scattenng from multiple strips.
New short pulse TD resuits are shown as weil.

1. INTRODUCTION

Plane wave scattering from a collection of periodically arranged elements continues to be a topic
of interest. Periodic arrays of patches or slots have been used for microwave and millimetre-wave
frequency selective surfaces.! Strip gratings have found use in optical spectrometers? and as
dispersive elements in pulse compression systems.? Although truncated in space, the arrays are
usually electrically large and are therefore often treated by analysing an ideal infinitely periodic
array. In such studies, the problem reduces to the much simpler investigation of scattering
from a single unit cell. Recently, however. attention has been given to the effects of array
truncation.'+7

Nearly all investigations of scattering from arrays of elements have been performed in the
frequency domain.!*-7 With current interest in impulse or UWB radar.® the time-dependent
scattering of short pulses from such configurations is gaining in importance. Moreover, the
availability of picosecond and femtosecond lasers makes these studies relevant also t. the interac-
tion of infrared or optical pulses with gratings. It is the purpose of this paper to develop an
efficient technique for the analysis and numerical calculation of UWB pulse cattering from a
large but finite collection of elements. The basic phenomena associated with such scattering can
be modelled by the strip array prototype adopted here.

For UWB radars, the commonly accepted definition of a UWB pulse is one having a bandwidth
of 25 per cent or more with respect to the centre frequency.® For the present study, an alternative
definition is more appropriate: the UWB pulse must contain sufficient energy at wavelengths Aq
ranging from A, <€ D to Aq ® D, where D is the characteristic size of the scatterer; this range of
wavelength accommodates at the extremes high resolution of local features as well as collective
wave phenomena associated with global features. To develop techniques for the general analysis
of UWB scattering from a large but finite collection of ele.nents, an array of planar strips in free
space has been selected as a prototype problem. For this case. which is of interest in its own right,
the characteristic size D for the UWB puise is the stup width.

To analyse UWB scattering efficiently, special considerations must be addressed. If the problem
is first analysed in the frequency domain and then converted to the time domain via the Fourier
transform, thousands of frequency points are often required to get accurate time-domain results.
If one were to apply previously developed frequency-domain techniques!-*~7 directly to such a

0894-33706/93/010003-15%$12.50 Received 31 August 1991
© 1993 by John Wiley & Sons, Ltd.




4 L. CARIN AND L. B. FELSEN

problem, the CPU time required would be so excessive as to make the anaiysis impracticable. To
avoid this difficuity, the present study utilizes a hvbrid numerical/analytical technique. This
involves application of a spectral-domain formulation, with a moment method solution. Closed
form asymptotic expressions are developed for reaction integrals that contain expansion and testing
functions separated by 0-1A, or more. This method leads to a highly efficient and accurate
procedure.

The paper is organized as follows. Section 2 deals briefly with the spectral domain formuiation
of time-harmonic plane wave scattering from a collection of strips in free space. Sections 3 and 4
are concerned with the techniques proposed to make such a formulation practicable for UWB
pulsed scattering applications. In particular. the basis functions and integration techniques are
discussed in detail. Numerical results are presented in Section 5. Comparisons are made with
available frequency-domain data in the literature. followed by new time-domain results. Con-
clusions that can be drawn from this work are summarized in section V1.

2. FORMULATION AND FREQUENCY-DOMAIN SOLUTION STRATEGY

This section deals with time-harmonic plane wave scattering from a finite array of perfectly
conducting infinitesimally thin strips in free space. Referring to Figure 1. the surfaces of the
various strips are assumed to be perpendicular to v. and the fields in this two-dimensionai problem
are assumed to be independent of . Unlike previous studies that have performed the analysis by
using the two-dimensional free space (space domain) Green's function.*~" the problem is formu-
lated here in the spectral domain (with respect to x). This is done for two reasons: (i) as shown
in section 3, one obtains thereby a convenient and efficient asymptotic representation. and (ii)
this method is readily extended to more complicated configurations involving layered dielectrics.
Because spectral domain formuiations have been used for several related problems.”"'! this section
contains only a brief summary of those issues which are of importance for the present investigation.
Assuming a plane wave incident obliquely on the strips in Figure 1. and applying the boundary
condition for the electric field on the perfect conductors. one arrives at the expression:

y X (E+E) =0 (1)

A bold-face symbol denotes a vector quantity and a tilde, later on. identifies quantities in the
spectral domain. The boundary condition in (1) is applied on the surface of each strip. Here,
E'(x.y) is the incident vector electric field in the absence of the strips, while E*{x.v) is the scattered
vector electric field produced by the electric surface currents J(x'.y') induced on the strips. The
scattered field can be expressed as (an e time-dependence is assumed and suppressed henceforth)

E’(x,y) = ] G(k“y;y').j(kny‘)e‘ik,(t—,')dk’ )
[o
6
]
L ] . 1 SRR

Figure 1. Example of a multilayer strip grating in free spacc




ULTRA-WIDEBAND PULSED PLANE WAVE SCATTERING 5

where G(k,.y;y') and J(k,.y’) are the dyadic Green's function and surface current, respectively,
in the k, spectral wavenumber domain. The contour of integration C is assumed to run initially
along the real k, axis. Because the problem is two-dimensional. only a single component of surface
current (longitudinal or transverse) is induced for a given polarization (TE or TM.!? respectively).
Therefore, only a single component of the dyadic Green's function is required for a given incident
polarization. The required component of the spectral domain Green's function 1s

<

Ghlkeyiy') = 5 e fdsi=v1 3)

with kg = wy potp. For TM and TE waves. respectively, it is well known that the wave impedances
are given by

VAI—AG
Zh=
jwea
Zc = JwEn (4)
Vhi—k;

The boundary condition in (1) is enforced numericaily by first expanding the unknown surface
currents J(x',y") in a known set of basis functions f,(x'.v") with unknown coefficients a,:

Mo
r'y) = 2 addx'y) (5)
k=1
By applying a Galerkin testing procedure'® to {1). one obtains

“Vh
“f E(xy)-fHxy)dc= 2 a, f fr(key) Glk,yy') - fulkoy ) e mbm 0 dk,  (6)
5 k=1 '

for m = 1, 2, ..., N,. Here, x, represents the location (in x) of the centre of the basis function
f,, and superscript * denotes the complex conjugate. The integral on the left side of (6) extends
over the surface S of a particular strip. By expanding the currents and applying the testing
procedure on each strip, an N, XN, matrix equation is produced. where N, is the total number
of basis functions. From this equation one can determine the basis function coefficients. and from
{5) and (2), respectively, the curreats and scattered fields.

For a plane wave incident at angle ©, (see Figure 1), E{(x.y) can be expressed as

E'(X,y) =¢ e)kn sin O, x e;k(,cus LAY (7)
where ¢ is a vector constant. For TE incidence. ¢ is in the z-direction while for TM incidence. ¢

lies in the x-y plane but depends on the angle of incidence. Using Parseval’'s theorem, the left
side of (6) can be evaluated trivially as

j E'(x,p) - [3(x,y) dx = e*oco Ov grkosin 0,5, £2 (k= —k,5in ©,.) - (8)
A

One usually selects basis functions that have closed form spectral domain representations; therefore
the computational effort in this formulation involves the numerical evaluation of the integrals on
the right-hand side of (6).

3. FREQUENCY-DOMAIN IMPLEMENTATION FOR UWB SIGNALS

The integrals on the right side of (6) can be expressed in the generic form

Lok = f UM IEATENCEC I TS (9)
B
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where A, = |y,,~%| and 4, = x,,—x;. Here, y,, and y; locate the position in y of testing function
m and expansion function k, respectively. For UWB applications, the separation 1. = AZ+A?
between expansion and testing functions will range from zero to several wavelengths. Therefore.
to make the analysis of UWB pulse scattering practicable, special considerations are required for
the evaluation of integrals of the form in (9).

3.1. Basis functions

Because integrals as in (9) must be calculated over an ultra-wide bandwidth and the efficiency
of such integrations determines the ultimate speed of the algorithm. it is desirable to derive a
closed form asymptotic expression for (9) when L is large relative to wavelength. As wiil be
demoastrated below, it is possible to derive such an expression that is accurate even when L is a
small fraction of a wavelength.

Success in this endeavour is dictated in large part by the choice of basis functions. It is desirable
to use basis functions with simple spectral-domain representations. For this reason. the complete
domain basis functions chosen here. which do not explicitly enforce the edge condition. are

) = s KTXTWID] W
f,(x)—sm[ W } iRk {10)

where W is the strip width. Note that in (10), the explicit y' dependence of f,(x".y') has been
suppressed. This y’ dependence is manifested in the fact that. in general. the strip width W will
be different for each strip and therefore will depend on the layer in which the strip is located.
The spectral domain representation of f,(x’) is

filk,) = jsin(k W/2) si(k,) (11)
for k even. and
fulky) = cos(k,Wi2) s, (k,) (12)
for k odd. with s.(k,) defined as
(k) = iy = (13)
Silky) = o k(=T T (-1
x W x w

The spectral representation of the basis function therefore consists of a trigonometric function
which, in general, varies rapidly with respect to the remaining algebraic expression s,. It should
be noted that the commonly used triangular subsectional basis functions also can be written as
the product of a rapidly varying trigonometric function and a function that varies slowly in
comparison. Since many subsectional basis functions are usually required per wavelength.® they
were not chosen for the present investigation into UWB scattering.

3.2. Asymptotic representation

The integrals that need be evaluated can be grouped into two types: (i) for TM waves
1 - o s .
= f Ptk B=Refotk, Y1 8Kiay ¢ -ikca ik, (14)
we o

and (ii) for TE waves
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TE § 1 f ~j AB—I2A, o ik A,
7% = oy | fm(ke) === fulky) € 715674 e 71k dk, (15)
< vko—ki

By grouping the trigonometric parts of the basis functions. after decomposition, with the
exponentials in (14) and (15), ITE and /) each can be expressed as a sum of integrals of the
form

K@= )‘El"eo f VIE= KB smlke)salk,) €7 K808y e kil ebenW ik, (16)
C
and
KTE = jope | oS (o, G-, ks, emaw g, (17)
J c k2—k2
VK~ Kb

respectively, with n either 0, 1, or ~1.
These integrals can be approximated to a high degree of accuracy using standard asymptotic
techniques.!* It is convenient to introduce the following change of variables:

Lisin®=4A,+nW, Licos®@=A4,, Ly = (A, +nW)+A2 k,=kosin{ (18)

which transforms (16) and (17) into the following simpler equations (see Reference 14 for the
integration path in the {-plane):

KM = wp,of Sl {)sk(L) cos® L e M eon@-0) gy (19)
A

Ki%= WMJ S D)5i(L) @710 0O -0 Gy (20)
C

with ) = koL,. These integrals are evaiuated most efficiently along the steepest descent path
(SDP) with saddle point at { = ©.1* By performing a first-order asymptotic evaluation of (19)
and (2) around the saddle point. one finds

Kl ~wp, \}%s,,‘(k,:knsin ©) s (k.=kosin &) cos* @ e 1™ (21)
KTE~wp, %,{Sm(k,=k08iﬂ 0) sk, =kqsin ©) e gim (22)

Inspection of (21) reveals a problem: for the important case of @ = = /2 (expansion and
testing function on the same plane), (21) predicts I} = O for all m and k. This is because an x-
directed current will have no far-field x-component of electric field along its axis. Therefore the
first order approximation in (21) is only valid in the far field. A second-order asymptotic evaluation
is in general quite difficult. However, for the special case of @=2>n/2, a second order approxi-
mation of (19) readily yields

K™~ jop, %’—2 Smiky=ko sin ©)s,(Kk, =k, sin @) e~ e1m (23)

To perform higher-order asymptotic evaluations, one approximates the slowly varying part of the
kernel with a few terms of its Taylor series, and therefore one must differentiate the slowly varying
term of the kernel.'* This is trivial for the kernel in (19) when { = 7/2 because the derivatives
of s,{{) and 5,({) drop out in view of the vanishing of the cos*({) term. This fact was used to
derive the approximation in (23) for {=mn/2. A thorough test of (21)-(23) has been performed




8 L. CARIN AND L. B. FELSEN

for a wide range of strip widths and separations. It has been found that these expressions give
good agreement with the numerical evaluation of (14) and (15) for strip separations greater than
0-1ho. As an example, a comparison between the asymptotic expressions and numerical integration
is presented in Figure 2 for I73¥. Good agreement is seen over the entire bandwidth. Likewise,
results for the induced currents and scattered fields computed from (21)-(23) in both the time
and frequency domains were found to be in nearly compiete agreement with resuits calculated by
the numerical integration of (14) and (15) (less than 1 per cent difference}. As a practical matter,
it should be pointed out that one must use L'Hopital's rule for &, sin @==kn/W to get good
agreement over the entire bandwidth.

In summary, use of the asymptotic expressions to replace strictly numerical procedures results
in a tremendous reduction in CPU time when considering UWB plane wave scattering from a

.\
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equals the strip width W. The solid line represents the numericat evaluation of (15) while the dashed line represents the
asymptotic approximation. {a) Real part. (b} Imaginary part
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collection of strips. This is true especially when the expansion and testing functions are separated
by a wavelength or more. The accuracy of the asymptotics, as confirmed by comparison between
the numerical and asymptot.c evaluations of the integrals. is achieved only when the trigonometric
parts of the spectral basis functions are grouped with the exponential functions. This is because
the trigonometric parts of the spectral basis functions may have variations equal to. or greater
than. those of the exponential functions; therefore. they must be combined with the rapidly varying
parts of the integrands when applying asymptotics.

3.3. Integration along SDP

For expansion and testing functions separated by less than 0-1A,. the asymptotic forms in
{21)~-(23) are less accurate and another efficient means of evaluating (14) and (15) is required.
For such cases. (14) and (15) are evaluated numerically along the SDP.'* Although this is obviously
more time-consuming than evaluation of the closed form expressions (21)-{23), it is more efficient
than performing the integral along the real &, axis.

3.4. Self term

The above-mentioned techniques are useful for expansion and testing functions separated in
space. and hence associated with different strips. For the self terms, however. the expansions and
testing runctions occupy the same strip and are therefore not spatially separated (A, = A, = 0).
Again (14) and (15) can be reduced to a sum of integrals of the form in (16) and (17), respectively.
However. since A, = 4, = 0, (21)-(23) are not valid for n = 0 or for W < (-1A,. In a related
problem, it has been demonstrated that integrals of the form (14) and (15) vary slowly with
frequency when A, = A, = 0. This can be unde.s100d by realizing that the self terms sample
essentially the near fields of the expansion function. and the near fields generaliy vary less strongly
with frequency than their far-field counterparts.

UWB scattering requires very fine sampling of the frequency spectrum in order to furnish
accurate time-domain results. Realizing that (14) and (15) vary slowly with frequency for
A, = A, = 0, the seif terms’ integrals need be computed only at points along a relatively coarse
frequency grid. The values of the integral between points along the coarse grid can be computed
accurately by use of a simple extrapolation procedure.? This technique of computation for the self
terms over an ultra-wide bandwidth has been applied in the results to be presented subsequently,
and it leads to significant reduction in CPU time.

3.5. Summary of integration techniques

In summary, for expansion and testing functions separated in space by 0-1A, or more, the
asymptotic expressions (21)-(23) are used for the computation of the reaction integrals. For
expansion and testing functions separated in space by less than (-1\,. numerical integration is
performed along the SDP. The expressions (21)-(23) require virtually no CPU time: the inte-
gration along the SDP is very efficient and less time-consuming than real axis integration. The
time-consuming part of the algorithm for UWB applications involves the computation of the self
terms. Realizing, however. that these integrals vary slowly with frequency, the self terms are
computed only at points along a relatively coarse frequency grid. All self term integrals at
frequency points between the grid points are efficiently computed using linear extrapolation. It
should also be noted that due to reciprocity, there are many redundant integrais in the moment
method matrix. Taking advantage of this redundancy and using the integration techniques summar-
ized above, UWB pulsed plane wave scattering from a collection of conducting strips becomes
tractable. It is believed that these and related techniques can be extended to other classes of UWB
scattering problems.
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4. INVERSION INTO THE TIME DOMAIN

In order to obtain accurate resuits for UWB pulsed plane wave scattering, it is necessary that a
sufficiently large number of frequency-domain points be used before Fourier transforming into
the time domain. The integrals which vary most rapidly with frequency will be those associated
with the most widely separated expansion and testing functions. An estimate of the required
number of frequency points required can therefore be found by examining (21)-(23). The term
in these expressions having the most rapid variation with frequency is e /. Assume that L, = L.,
is the largest separation encountered in the problem under study. and that w,,,, is the highest
frequency component needed to resolve the incident pulse. The term e “**olmax will therefore range
from 1 to e ~*0 maxkmax, where kg ., is the free space wavenumber at w,,,,. If N frequency points
are taken per period of oscillation. then Nkp maxlmax/27 frequency samples are required. Here is
an example of what this implies; for Lyyax = 03 M. Wy = 78-3 rad/s (100 GHz). and N = 10,
the frequency spectrum must be discretized from 0 to 100 GHz in 100 MHz increments. This
explains why it is essential that the frequency-domain results be computed as efficienily as possible.

The above considerations apply only to time-domain quantities computed directly by the moment
method procedure described earlier: the time-dependent currents. To compute the scattered field.
other considerations are necessary. In the far-held approximation. the time-dependent scattered
fields are computed from integrals of the form

E(xya)= Jh(x.y.w) e kor e1el dey (24)

where r is the distance from the centre of a given strip to the observation point (x.y). The
expression h(x,y,w) is a function of the surface currents which are properly described in the
frequency domain by the discretization procedure discussed above. If the observation distance r
from a given strip is larger than L, (as it usually will be), then e ~**¢ wiil vary morce quickly
than e t*olmax, and the frequency discretization may not be sufficient to describe the time-
dependent scattered fields accurately. A very simple procedure can be used to overcome this
difficulty. Equation (24) can be rewritten as

Efxyy)= fh(x.y.m)ei"’y dw (25)

where vy = 1~r/c. The expression h(x.y.w) involves only the basis functions and the Green's
function for observation of the fields on the surface of the strips. The discretization required to
resolve E,(x.y.y) is the same as that required of the currents, and E{x.y.r) can be found easily
by shifting E;(x,y,y) by a time r/c.

It should be noted that the far-field approximation will in general not be valid for significantly
low-frequency components associated with a given incident puise. However. pulses radiated by
practical antennas often have a weakly excited low-frequency spectrum so that (25) remains
applicable for scattered field evaluation in most observation regions of interest. including those
relatively close to the array (but ‘far’ from each strip). All time-dependent fields in the present
study have been computed using (25) in conjunction with the FFT.

5. RESULTS

5.1. Frequency domain

To the authors’ best knowledge, there are no results in the literature for UWB pulsed scattering
from a collection of strips. Therefore. to check the accuracy of the computer code, comparisons
have been made with available frequency-domain results. For all frequency domain calculations,
a total of 12 basis functions was used per strip. For TM and TE incidence, respectively, Figures
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3(a) and 3(b) show the normalized currents induced on three coplanar strips bv a normally
incident plane wave (8, = 0). The strip widths and separations are A,/4. The calculations reveal
good agreement with data computed by Cwik and Mittra.? It is of interest to examine how the
trigonometric basis functions resolve the edge condition for the case of TE incidence. From Figure
3(b) it is seen that the calculated currents oscillate around the solution found when the edge
condition is used in the basis functions'® (dashed curve). As the number of trigonometric basis
functions is ircreased on each strip, the oscillations become more closely confined around the
dashed curve. Although, for the TE case. a large number of basis functions is required to obtain
adequate convergence for the currenus, it has been determined that 12 basis functions are sufficient
to obtain convergence for the scattered far fields (10 better than | per cent). Therefore. the far
fields are not sensitive to the above discrepancies in the surface currents.
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Figure 3. Normalized surface currents introduced by TM and TE plane waves incident vertically on three strips of sinp

width and separation equal to A./4. The solid line represents the resulis of this work and the squares represent resuits

from Reference 4. (a) TM polarization. (b) TE polarization. The dashed line was computed b, including the edge condition
in the basis functions'?
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Figures 4(a) and 4(b) show the scattered far field due to a TM and TE plane wave, respectively,
incident at 8, = 60° upon five coplanar strips. The strip widths are 0-1k, and the separation
between consecutive strips is 0-4x,. These results can be compared with data computed recentlv
by Matsushima and Itakura (Figures 6{a) and 6(c)).* It is difficult to transfer the data accurately
from the figures in Reference 5 (because of their small size). but excellent agreement 15 noted
upon comparison. It is worth meationing that the basis functions in Reference 5 for TE incidence
satisfy the edge condition while those here do not. Nevertheless, the agreement between Figure
4(b) and the results in Reference 5 is excellent for all observation angles except very near =n/2
(abrupt drop in the pattern of Figure 4(b)). The discrepancy over this verv small range of
observation angles. which may in fact be due to the edge condition deficiency of the basis functions
in (10), does not detract from the utility of the algorithm employed here.

$.2. Time domain

To demonstrate the capabilities of the numerical code for UWB pulsed scattering from a large
collection of strips. TE and TM scattering from !S coplanar strips in free space has been considered.
The strips each have width W and separauon 2W/3. The inaident puise. normalized to the width
W. and its frequency spectrum are shown in Figure 5. All time-domain results are plotted as a
function of 1. where 7 is the time required by a plane wave to travel a distance W in free space.
Note that the incident pulse has a temporal length shorter than 7 so that it 1s capable of resolving
individual scattering from the strip edges.

The 15 coplanar strips are identified as follows: the centre strip is defined as strip 0. the seven
strips to the right of the centre strip are labelled 1 to 7 from left to right. and the seven strips to
the left of the centre strip are labelled —1 to ~7 from right to left. The 1 = () time reference is
defined as the time when the incident puise reaches the centre of strip 0. Figures 6(a) and 6(bh}
show the scattered fields produced by TM and TE plane waves. respectively. incident at an angic
0, = 20°. The scattered fields are observed at a distance 30W/3 directly above the centre of strip
0, and the scattered field amplitude is normalized to the peak amplitude of the incident pulse. in
addition. the left edge of each strip is labelled a’. while the right edge is labelled 'b’. On each
strip, the incident puise will first hit edge ‘b’ and subsequently edge 'a’. in Figures 6(a) 2nd 6(b).
the travel time of a wavefront along a straight line from a given edge to the observation point is

FrrTTT ™ T T
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Figure 4. Normalized scattered far ficid due to TM and TE plane waves incident on five coplanar strips of width 0-14,
and separation 0-4A,." The waves are incident at 8, = 6. {a) T™M polanzation. (b} TE polarization
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+ is the time required for a plane wave to travel a distance W (strip width) in free space. The pulse consists of three

sections of a sine wave, with two lobes of equal amplitude | below the zero axis and one lobe of amplitude 2 above the
zero axis. (b) Normalized frequency spectrum v. Wik,

labelled for all strips to the left of centre. Note that as one moves further to the left along the
strip array, the scattered pulses from individual edges become more distinct. It can be shown that
for the chosen strip distribution and incidence angle, the scattered wavefronts from the edges of
strips 0-7 arrive at the observer at nearly the same time: therefore. these signals are not individually
resolvable. It is also interesting to note that the waveform scattered from a given edge is different
for the TE and TM cases. For the TM case, the scattered field from edge ‘b’ is weaker than that
from edge ‘a’, whereas the opposite is true for the TE case.

The coplanar strip array has two scales: the strip width and the strip separation. By considering
the late-time response, and focusing on the time delays between the series of repetitive waveforms,
one can develop a scheme by which these two scales of the scat _ring cells can be estimated from
the data. The time delay between consecutive strong and weak signals gives information about
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Figure 6. Time-dependent scatteted fields due to TM and TE plane wave pulse in Figure S, incident at ©, = 20° upon 15

coplanar strips of equal width W and separation 2W/3. The strips arc labelled as follows: the centre sinip is strip 0, the

seven strips to the right of the centre strip are labelled 1 to 7 from left to right, and the seven remaining strips are labelled

~1 to ~7 from right to left. The left edge of cach strip is labelled “a’, the right edge is labelled *b". The travel times. to

the observer. of wavefronts from the edges of the seven strips to the left of the centre strip are identified by arrows. The

time reference ¢ = @ is the time at which the plane wave first hits the centre of strip 0, and the observation point is S0W/3
directly above the centre of strip 0. (a} TM polarization. (b) TE polarization

the strip width, while the time delay between consecutive large (or small) puises gives information
about the strip separation. It is believed that the insight gained from such simple investigations
will be useful fc. understanding the scattering of UWB pulses from a more general class of
scattering configurations. A detailed analysis and explanation of these and other results obtained
with the present algorithm will be submitted separately for publication.!s-!?

Finally, some observations are made about the time-dependent surface currents induced on the
strips. In Figures 7(a) and 7(b), respectively, are shown the induced currents on strip 0 for the
TM and TE cases investigated in Figure 6. The currents are plotted as a function of time at three
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Figure 7. Time-dependent currents induced on the centre strip of the 15-strip array by the T™ and TE pulsed planc waves
in Figure 6. Curves 1. 2, and 3 are for positions x = W/4, x = 0, and x = —W/4, respectively, on a strip of width W with
centre at x = 0. (a) TM polarization. (b) TE polanzation

locations along strip 0: at x = —~W/4, x = 0, x = W/4 (with the strip centre at x = 0), The TM
incident wave induces surface currents which propagate in the x-direction, and can therefore be
expected to give rise to resonances between the strip edges. For the TE case, however, the induced
currents are longitudinal (z-direction) and are therefore expected to interact less strongly between
the strip edges. These expectations are confirmed upon examining Figures 7(a) and 7(b), where
the late-time oscillations in the TM case are much more pronounced than in the TE case.

The 15-strip results above were computed on an 1BM 6000 RISC workstation with 12 basis
functions used per strip. The time-dependent data required calculations at 2500 frequency points
(before inversion to the time domain), with resulits obtained after about 6-5 hours of CPU time
(for an average of less than 10 CPU seconds per frequency point).
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6. CONCLUSIONS

An efficient formulation has been developed for the analysis of UWB pulsed scattering from a
large collection of planar strips in free space. By the spectral domain solution strategy, which has
been summarized in section 3.5, closed-form asymptotic approximations have been derived 1or
reaction integrals involving expansion and testing functions separated by greater than 0-1x,. This,
coupled with the extrapolation procedure used for the self terms. dramatically reduces CPU time
and makes :1e analysis of UWB scattering tractable. The procedures developed in this paper have
been applied to a broad parametric study of UWB scattering by different arrangements of
strips. to various processing techniques of the time-domain data. and to direct and quantitative
interpretation of the data by time-domain wave processes. These investigations will be published
separately.'s-'7 It is also intended to extend the algorithm discussed here to more complicated
environments involving dielectric layers. The information gathered from these explorations may
find use in the interpretation of UWB radar data from large periodic and quasi-periodic multi-
scale environments. such as ocean waves.

REFERENCES

1. T. R. Schimert. A. J. Brouns. C. H. Chan and R. Mittra. ‘Investigavon ot millimeter-wave scattering from frequency

selective surfaces’. JEEE Trans. Microwave Theorv Tech.. 39, 315322 {1991), and the reterences therein.

M. Born and E. Wolf, Principles of Optics. Macmillan, New York. 1964,

E. B. Treacy. "Optical puise compression with diffraction groungs™. JEEE J. Quantum Electron., S. 354-459 (1969).

. T. Cwik and R. Mittra. ‘The effects of the truncation and curvature of penodic surfaces: a strip graung’. /EEE Trans.

Antennas Propagat.. 36, 612-622 (1988).

. A. Matsushima and T. Itakura. ‘Singular integral equation approach to elcciromagnetic scattenng from a finite penodic

array of conducting strips’, J. of Eleciromag. Waves Appl.. 5. 545-562 (1991).

6. W. A. Walker and C. M. Butler. ‘A method for computing scattering by large arrays of narrow sirips’. IEEE Trans.
Antennas Propagat., 32. 13271334 (1984).

7. L. Gurel and W. C. Chew. ‘Recursive algorithms for calculating the scattenng from N stnps or patches’. JEEE Trans.
Antennas Propaga:r.. 38. 507-515 (1990).

8. R. S. Vickers, ‘Ultra-wideband radar—potential and limitations'. IEEE MTT-Symp. Dig.. 371-374 (1991).

9. E. H. Newman and D. Forrai. Scattering from a microstrip patch’. [FEE Trans. Antennas Propagar., 35. 245-251
(1987).

10. D. M. Pozar, 'Radiation and scattering from a microstrip patch on a uniaxial substrate’. 35, 613-621 (1987).

11. D. R. Jackson. "The RCS of a rectangular microstrip patch in a substrate—superstrate geometry’, /EEE Trans. Antennas
Propagat., 38. 2-8 (1990).

12. §. S. H. Nagvi. ‘A comment on the use of TE/TM polarization aotation’. /[EEE Trans. Antennas Propagat.. 38, 584
(1990).

13. R. F. Harrington. Field Computation by Moment Methods. Kreiger. Malabar. FL, 1982,

14. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves. Prentice Hall. Englewood Cliffs. NJ. 1972, Chs.
4 and §.

15. E. G. Farr. C. H. Chan and R. Mittra. "A frequency-dependent coupled-mode analvsis of multiconductor microstnip
lines with applications to VLSI interconnection problems’. [EEE Trans. Microwave Theory Tech.. 34. 307-310 (1986).

16. L. Carin and L. B. Felsen. 'Design onented parametrization of finite penodic stnp gratings’. IEEE Microwave and
Guided Wave Lens.. Sept. (1992).

17. L. Carin and L. B. Felsen, ‘Time harmonic and transient scattering by finite penodic flat stnp arravs: hybnd (ray) -
(Floguet mode) - (MOM) algorithm and its GTD interpretation’, submitted to [EEE Trans. Antennas and Prop.

Pl o

W

Authors’ biographies:

Lawrence Carin was born in Washington. DC on 25 March 1963. He received the B.S.. M.S,, and Ph.D.
degrees. all in electrical engineering, from the University of Maryland. College Park. in 1985, 1986. and
1989, respectively.

He is now an Assistant Professor with the Electrical Engineering Department at Polytechnic University.
His present research interests include the analysis of electromagnetic waves in planar and quasi-planar
structures, optoelectronics, and ultra-wideband electromagnetics.

Dr. Carin is a member of Tau Beta Pi and Eta Kappa Nu.

Leopold B. Felsen was born in Munich, Germany, on 7 May 1924. He received the B.E.E.. M.E.E.. and
D.E.E. degrees from the Polytechnic Institute of Brooklyn, Brooklyn. N.Y.. in 1948, 1950 and 1952,
respectively.

During World War II he was concerned with work on electronic ballistics—calibration devices in the U.S,
Army. Since 1948 he has been with Polytechnic Institute of Brcokiyn, now Polytechnic University, and since
1978 he holds the position of Institute Professor, now renamed University Professor. From 1974 to 1978, he
was Dean of Engineering. On a leave of absence during 1960-1961 he served as a Liaison Scientist with the
London Branch of the Office of Naval Research. His research work has dealt with a variety of areas in
electromagnetic radiation and diffraction theory, and his recent interest is centred primarily on general
techniques for wave propagation in various disciplines. including optics. acoustics. mechanics of submerged




ULTRA-WIDEBAND PULSED PLANE WAVE SCATTERING 17

structures. and seismology, in addition to electromagnetics. He is author or co-author of more than 250
papers, and author or editor of several books. He has held visiting professorships at universities in the U.S.
and abroad. In 1967, 1971, and 1988. he was in the Soviet Union as an wnvited guest of the Soviet Academy
of Sciences, and in 1981, he was invited for a six-week stay to the People’s Republic of China.

Dr. Felsen is a member of Eta Kappa Nu, Tau Beta Pi. Sigma Xi. and a Fellow of the Institute of Electncal
and Electronic Engineers (IEEE). the Optical Society of America as well as the Acoustical Society of
America. He is listed in numerous biographical volumes. He was an Associate Editor of Radio Science: he
is now an Associate Editor of Wave Motion and an Editor of the Wave Phenomena Series of Springer-Verlag.
In 1974, he was a Distinguished Lecturer for the IEEE Antennas and Propagation Society. He was awarded
a Guggenheim Fellowship for 1973. the Balthasar van der Pol Gold Medal from URSI in 1975, an honorary
doctorate from the Technical University of Denmark in 1979, a Humboldt Foundation Semor Scientist Award
in 1981, an IEEE Centennial Medal in 1984, a Sackler Fellowship from Tel Aviv University in 1985, an IBM
Visiting Fellowship from Northeastern University in 1990, and the IEEE Heinrich Hertz Medal for 1991.
Also. awards have been bestowed on several papers authored or co-authored by him. In 1977 he was elected
to the National Academy of Engineering. He has served as Vice-Chairman and Chairman of both the U.S.
and the International URSI Commission B.




INTERNATIONAL JOURNAL OF NUMERICAL MODELLING : ELECTRONIC NETWORKS, DEVICES AND FIELDS,
Vol. 6, 19-27 (1993)

CALCULATING FREQUENCY-DOMAIN DATA BY TIME-
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SUMMARY

We show the derivation of parameters in the frequency domain from time-domain data. Far-field character-
istics are obtained by a convolution formula with the harmonic field amplitudes. which are obtained via a
Fourier transform or by sampling. The electric field of filter ports is expanded into the discrete eigenmodes.
By this method. a monochromatic exact open boundary can be formulated and the fields divided into the
incident and the reflected part. For wide band operation an a posteriori error correction scheme is presented.

INTRODUCTION

The analysis of electromagnetic components can typically be subdivided into two tasks. First the
mathematical probiem is defined and solved yielding the electromagnetic fields as a function of
one temporal and three spatial co-ordinates. The second task. we focus on in this paper. consists
of reducing and filtering the result.

One common method of eliminating the time-dependency is to assume harmonic time-depen-
dence. In the case of constant, time-invariant materials Maxwell’s equations are decoupled for
different frequencies and transform to quasistatic differential equations. Furthermore derived
parameters such as wave amplitudes are used to describe the solution in order to obtain a
formulation, which is analogous to a discrete network.

The direct solution of the frequency-domain problem using finite differences or similar methods
has the following disadvantages. The equation system is complex and therefore twice as large as
in the time domain. When calculating near-resonances the algebraic condition may become very
bad. One has to eliminate the spurious, non-physical solutions. Also we have to repeat the solution
process for each frequency.

The alternative is to calculate the time-domain response of the electromagnetic component and
to derive the frequency-domain parameters. In the following we show the calculation of far-field
transforms and scattering parameters with some applications. For the numerical solution. the finite
integration algorithm for the spatial discretization in combination with a leapfrog scheme for the
time integration was used.!-?

FAR-FIELD CHARACTERISTICS

One disadvantage of finite difference and finite element methods is that all computations are
restricted to a finite grid. Part of this problem can be overcome by introducing radiation boundary
operators simulating an infinite mesh size. The direct calculation of far-field characteristics of, for
example. antennas is still infeasible, since the grid has to be extended to distances, where the
near fields have ebbed off.

Therefore we have to strip off the electromagnetic fields inside the grid of their near-field parts.
The far field then can be written as

e«jkr

Efar(rv 8,¢) =

F(©.4) m

r

a plane wave in radial direction with the far-field transform F (©, &) as the directional pattern.
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Figure 1. Integration surface around radiator

We include the radiating structure in a volume as shown in Figure | and subsutute the radiating
sources by equivalent electric and magnetic surface currents. given by the tangential electric and
magnetic components along the surface. The far field can be calculated by convoluting the surface
currents with the far fields of elementary electric and magnetic dipoles:*

F(©. ¢) = f“;’j K {e, X (, % (n x B)) — ie, x (n x E)} dA @)

i

where n is the normal to the integration surface. e, the normalized radiation vector and r' the
point of integration. E and B denote complex time harmonic electric and magnetic field amplitudes
respectively.

The time harmonic field amplitudes can be obtained either by using a time harmonic excitation
and sampling

E = E(t)) — JE(¢, + T/4) (3)
B = Bito) — |B(s, + T/4) {4)

(T denotes the length of the harmonic period and 1, has to be a time. where the fields have
reached their harmonic state). or by an on-line Fourier transform.

FAR FIELD OF A CORRUGATED HORN

As an example we show the calculation of the far field of a corrugated horn. The structure shown
in Figure 2 is rotationally symmetric and was calculated in rz-geometry using 65.000 mesh points.

Figure 2. Geometry of the corrugated horn
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As excitation a pulsed sine wave was used. The geometrical parameters. normed with the design
frequency kp, = wy/c, are

inner diameter of waveguide bkq 325
steepness D] 10°
number of grooves N 72
depth of the grooves thhy 027
distance between two grooves Lg 01
width of the grooves L  0-067

Figure 3 shows the time response of the radial field on the horn axis. The time harmonic fields
were calculated by a Fourier transform.

Figure 4 shows the far-field transform in a polar plot and Figure S in a logarithmic scale. For
comparison the results calculated by R. Erb® by a mode-matching technique are drawn as a dashed
line. Both results show good agreement except near 90 degrees. This is due to a different modelling.
R. Erb assumed radiation into a halfspace with an infinitely conducting screen. whereas here a
finite structure was calculated.

SCATTERING PARAMETERS
When describing multiports. we have discrete ports and a discrete spectrum of eigenmodes which

set up the field inside the waveguides connecting the multiport to other components. So we use
a scattering matrix

(81(jw)b2(jw)...La(jw)]' = S [a:(jw) ga(jw)...aa(jw)] &)

to describe the relationship between incoming and reflected wave amplitudes.
The transverse electromagnetic fields are described in the frequency domain by a superposition
of incoming and reflected waves
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Figure 3. Field in the horn aperture v. time
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Ev(x.y.jo) ,
E(r.w) = 3 =5 [ajw)e 0% + b (jwenier] ©
v fv(,w)
with the real power normalization factor

For the further derivation we use the weighted wave parameters d,(jw) = a,{jw)/f.(jo). b.(jw) =
b.(jo)/f(jw) and formulate the time-domain equation
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E(r.0) = D Efx.y0) * [d,) * P(t.2) + 6,() » Pt,~2)] 8

with a double convolution. The frequency dependencies have been replaced by time dependencies
and

Pt.2) = %, f e osel du (9)

-0

describes the waveguide propagation. In homogeneousiy filled waveguides we can find frequency-
independent transverse fields E,(x,y) that are orthogonal.

With this in mind we look at the following model of a transmission line (Figure 6). z = 0
denotes the outermost grid line at the waveguide port. z = 3z is the grid line one step inside and
A(1) and B(¢) are the transverse electromagnetic fields. Both can be expanded in terms of the
discrete two-dimensional eigenmodes (A,(r), B,(t)). The coefficients are composed of an incident
and a reflected wave amplitude:

z2=0:4.(jo) = dfjo) + 6,(jo) (10)
z="58z: B(jw) = d(jw)Pjw) ' + b,(jw)P (jw) (11

with
P (jw) = e vz (12)

We can realize boundary conditions. that are exact for at least one frequency wy when we
approximate the propagation filter P,(jw) by a recursive digital filter £, (jw) similar to classic open
boundaries*® with P (jonm) = P.(jws). With this filter we write analogue equations for the
approximated wave amplitudes

z=0:4,(jw) = d,(jw) + b, (jw) (13)
z=8z: B.(jw) = 4, (jo) Bl (jw)™' + B (jw) P(jw) (14)

and formulate a recursion for the unknown reflected amplitude
5.() = P.(0) * [B1) = Pi(1)» a)()] (1%)
The quality of the boundary condition is determined by the filter approximation, but we can
calculate the true (weighted) wave amplitudes 4,{jw), b,(jw) in a correction step after the time-

domain field calculation. The amplitudes 4,(jw), B,(jw) have a real physica! meaning, so it is
possible to substitute them in the above equations to yield the following relationship

A(t) B(t)
Figure 6. Model of a transmission line
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a(jw} 1 ] 1 1[G
[.b.u(iw)} = flje) [mw)—‘ f.,(jw] [L’L(;‘w)"’ £;(Jw)J [ézu«n] (16)

By this technique one can calculate a set of vectors {4,(jw) d:(jw)...a.(jw)])t and [&,(jw)
ba(jw)...b.(jw)] for different stimulations {4; (jw) @2(jw)...4, (ju)]' 10 solve the scattering matrix

BAND-STOP FILTER

As an example the results calculated for a waveguide band-stop filter operating in the X-band are
shown in Figure 7. In Figure 8 we have the measured and in Figure 9 the calculated transmission.’
For comparison. results calculated by a mode-matching technique are drawn in with a dashed
line.®

For a better estimatior of the error the curves are shown in Figure 10 using a range of
transmission from 0 to - 5 dB. It can be clearly seen, that the results agree within 0-15 dB.

CONCLUSIONS

In this paper we have presented two methods of deriving frequency-domain results from time-
domain data. Far-field characteristics are calculated by applying a convolution to the tangential
time harmonic electromagnetic components on the surface of the radiator. These fields can be
either sampled, using a monochromatic excitation. or obtained via a Fourier transform.

For the calculation of scattering parameters. we perform a mode expansion of the electromag-
netic fields inside the ports. The .a0dal coefficients can be used to obtain an exact open boundary
when using narrow-band signals and contain all information of incident and reflected wave
amplitudes. The systematic error introduced due to the incxact open boundarie; in a wide band
range can be compensated by an a posteriori error-correction scheme.

0.0
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J /
-20.0
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2 1
S
N p
Y 300
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92 94 96 98 100 102 104 106 108 U
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Figure 9. Culculated transmission (dashed line results obtained by mode matching)
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SUMMARY

The Hilbert space representation of the TLM method for time-domain computation of electromagnetic fields
and the algebraic computation of the discrete Green's function are investigated. The complete held state is
represented by a Hilbert space vector. The space and time evolution of the field state vector is governed by
operator equations in Hilbert space. The discrete Green's functions may be represented by a Neumann series
in space- and time-shift operators. The Hilbert space representation allows the description of the geometric
structures by projection operators. too. The system of difference equanior - governing the time evolution of
the electromagnetic field in configuration space is derived trom the operator equation for the field state
vector in the Hilbert space.

1. INTRODUCTION

The TLM (transmission line matrix) method developed and first published in 1971 by Johns and
Beurle is a discrete time-domain method for electromaguetic field computation.'-* In this paper.
the Hilbert space representation of the TLM method is presented and applied to the algebraic
computation of discrete Green's functions. The Hilbert space representation is a very general and
powerful concept in field theory.* Whereas in the electromagnetic theory Hilbert space methods
are mainly used for solving the field equations. as. for example. in the moment method.® in
quantum theory, the fundamental theoretical concepts have been formulated in Hilbert space.®?

The state of a discretized field can be represented by a vector in the Hilbe:t space. The
specification of the mesh node connections and the boundary conditions is done by operators in
the Hilbert space. The Hilbert space representation also allows the description of geometric
structures by projection operators. The space and time evolution of the field state vector is
governed by operator equations.

In field theory, field propagation in spatial domains may be treated using Green's functions.®
The concept of Green's functions may also be applied to discrete time-domain field computation.®
Discrete time-domain Green's functions allow the modelling of the refation between the field
values on the boundaries if knowledge of the field in the spatial domains beyond the boundaries
is not required. i

In this paper. the algebraic computation of the discrete Green's function is investigated. Our
approach is based on a Hilbert space representation of the space- and time-discretized electromag-
netic field. The discrete Green's functions may be represented by a Neumann series in space- and
time-shift operators. The system of difference equations governing the time evolution of the
electromagnetic field in configuration space is derived from the operator equation for the field
state vector in the Hilbert space. First results are presented for the two-dimensional case.

2. THE TWO-DIMENSIONAL TLM METHOD

The electromagnetic field is discretized within space and time. The space is modeiled by a mesh
of transmission lines connecting the sample points in space. The field computation algorithm
consists of two steps:

0894-3370/93/010029-17$13.50 Received 15 November 1991
© 1993 by John Wiley & Sons, Ltd.
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e The propagation of wave pulses from the mesh nodes to the neighbounag nodes.
e The scattering of the wave pulses in the mesh nodes.

In the following, we restrict our considerations to the two-dimensional case with the transverse
electric field. In the shunt TLM model. voltage wave amplitudes are used instead of total voltage
and current. The voltage wave amplitudes of the incident and the reflected waves are given by
«8m. and (b, .. The left index. k. denotes the discrete time co-ordinate and the right indices.
m and n. denote the two discrete space co-ordinates. We consider the TLLM mesh to be composed
by elementary TLM shunt node four-ports as shown in Figure 1. where cach of the four arms is
of length Al/2. The scattering in this elementary four-port 1s connected with the ume delay Ar.
The scattering of the wave pulses is described by

b, ay

b, -3 a;

b o s ()
il Bsdomn A {44 fon

with the scattering matrix 8 given bv

Pom Ao ddwe dame

[IE R FP i
Vo Heae tee— (o

With the scattering, a time delay of Az is associated and therefore. the time index. & is incremented
by one. The scattered pulses are the incident pulses of the ncighbouring elementary cell. This is
described by

A = a2 b
@3 = Dyt
K3 mn = kh-t.m,rv—t

Ay = kh\m.n s ‘3)

3. THE DISCRETE FIELD STATE SPACE

In the TLM model. the field state at a given discrcte time is described completely by specifying
the amplitudes of the four wave pulses incident to each mesh node. The space of the voltage wave
amplitudes of the incident and the reflected waves 4, ., and (b, ,, , is the four-dimensional real

1

3 m

Figure 1. A two-dimensional TLM shunt node four-pon
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vector space R*. In order to develop our formalism in a more general way we introduce the four-
dimensional complex vector space €* for representing the wave amplitudes ,a,, , and ,b,, ..

In order to describe the whole mesh state. we introduce the Hilbert space ¥,, which allows the
mapping of each mesh node onto an orthonormal set of base vectors of ¥,,.. The time states are
represented by the Hilbert space ¥,. With each pair of discrete spatial co-ordinates (m.n) a basis
vector of ¥, is associated and with each k. a basis vector of ¥, is associated. We now introduce
the state space ¥ given by the Cartesian product of ‘€*, ¥, and ¥,.

H=€CQH, K, 4)

The space ¥ is a Hilbert space, too. The complete time evolution of the field state within the
whole three-dimensional space-time may now be represented by a single vector in ¥. Using the
bra-ket notation introduced by Dirac.” the orthonormal basis vectors of ¥ are given by the bra-
vectors |k:m,n). The ket-vector (k;m.n| is the Hermitian conjugate of |k:m.n). The orthogo; ality
relations are given by

tkyimynyfkaimang) = 5&,13 Bt m2Oni n2 (5)

The incident and reflected voltage waves are represented by

Fx .o

fa) = Z D z “: tkim.n) (6)

—t
k==x m=—% 9 :~1r

and

=3 3 3 : tkam.n) (7

P

3 .b-ljm.n

in the Hilbert space ¥. We define the shift operators X. Y and their Hermitian conjugates X’
and Y* by '
Xik;man) = ik.m+1.n)
X'k.m.n) = lk:m—1.n)
Yik;mon) = kim.an+1)
Y'k;m.n) = lkiman—1) (8)
The operators X and Y shift the field state by one intervai A/ in the positive m- and n-direction.
respectively. Their Hermitian conjugates X* and Y" shift the field state in the opposite direction.
We define the time shift operator T. The time shift operator increments & by 1. i.e. it shifts

the field state by At in the positive time direction. If the time shift operator is applied to a vector
lk;m.ny, we obtain

Tlk.m.n) = lk+1.m.n) (9

We introduce the connection operator I" given by

0 X 0 0
X0 0 0
=10 0 0 v (19)
0 0 Y 0

With the connection operator I, equation (3) yields the operator equation
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[6) = [la) (1)
describing the mesh connections. The operator I is Hermitian and unitary:
r=r=r- {12)
Therefore we obtain from equations (11) and (12)
la)=T b} (13)
We now express equation (1) in the Hilbert space notation by
|6 =TS |a) (14)

This equation describes the simultaneous scattering within all the mesh node four-ports according
to Figure 1. The scattering by a mesh node causes the unit time delay Ar.

Figure 2 shows an example of a spatial domain within a TLM mesh. This spatial domain is
specified by a given set of mesh four-ports. A spatial domain D in our TLM mesh may be specified
by projection operators. We define the domain projection operator P,, which projects a state
vector la) on the domain D:

Ppla) = @) (13)

This projection operator may be written in dyadic notation as the sum of the projection operators
on the nodes belonging to the domain D:
Po= D O lkim.n)k:m.n (16)

mepnen

In the same way. we define the inner domain projection operator P, and the boundary projection
operator by

Py la) = |a) (17)
Py la) = la)y (18)
with
p=pP, (19)
I [ [ r
RORER 1 ]
’71 "1 fd L 4 »f
r ) »10 »v Pw
* + ¥ + ——t
BUSEE U0 U8 U5
[ [
} '<.Jﬁﬁx; -1

Figure 2. A spatial domain witlun the TLM mesh
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Py = PgPp (20)
Py + P, =Pp 21

The inner domain projection operator projects the circuit space ¥ on the inner ports of the
domain D (Figure 3). Since the projection operator P, and the connection operator I' are
commuting, i.e.

P rj=0 (22)
we obtain
by =T la) (23)

Applying diakoptics to TLM structures requires the computation of the wave pulses scattered at
the domain boundaries. The initial conditions or boundary conditions are given by the wave pulses
incident on the boundary ports. We apply the projection operators Py P, and Py P, in order to
separate the field states |a) and ib) into the inner field states |a), and |b), and the boundary states
lada and |b}s. From equation (14) we obtain

10)g =T Sppia)p + T Sy ja),

b)Y =T Siplada + T Sy la), (24)
with
Sug = PSPy
SB( = P,,S Pl
Sis=PSPy {25)
S" = Pl S P|

Using equations (23) and (24). we eliminate the inner domain states |a), and {b), and obtain
b)a =T Ses + TS (1 ~T TS,) '"T TSplla)g (26)

This is the relation between the incident and scattered boundary state. It describes the evolution
of the boundary field state without knowledge of the inner-field state. It has to be considered that
the operator equation (26) is non-local with respect to both space and time. We expand the
operator (1-I' T S;;) ! into a Neumann series'"!' and obtain

+ ] 1] E

4 4 t 4 <+

+ -+

Figure 3. The inner pors of a TLM domain
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(l ~-rT Su)“' = E T’(r Slly (27)

{=0
Inserting this into equation (26) yields the boundaryv state evolution equation
1b)a = Glade (28)

with the boundary field evolution operator G given by

G= [T Spa + Su ( i T 3(r su)‘) r Sm] (29)

1=

The boundary field operator G gives the relation between the boundarv state vector {a)g rep-
resenting the wave pulses incident on the boundary and the boundary state vector |b)g representing
the wave pulses reflected through the boundary. Equation (28) is the general formulation of the
boundary element problem in the Hilbert space. Since the Neumann series is an infinite geometrical
series in space- and time-shift operators, the boundary field operator is non-iocal with respect to
space and time.

4. THE DISCRETE TWO-DIMENSIONAL GREEN'S FUNCTION

As an exampie, we derive the discrete Green’s function for the half-plane. The discrete Green's
function for the half-plane is given by the projection of the boundary state evolution operator
equation (28) onto configuration space for a point-like initial state l@)y. The half-plane (Figure 4)
is defined by the domain projection operator P, given by

P, = 2 E |k:pt.nt) ¢k nf (30)

k.n m=0

As in the shunt TLM-model, voltage wave amplitudes instead of total voltages are used. a new
Green's function for wave amplitudes has to be defined. For a boundary problem. the discrete
Green's function is defined by the convolution

b - - -4

: L
1
1
V

QU SRR ¢

1

-

Figure 4. The homogeneous wo-dimensional half-space
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kbn = 2 A --lx'Gn—n' & Gn
K

=G, dw (31)
with
nEB (32)
where
B = {n,.n...ny} (33)

denotes the set of N boundary nodes.

«a, is the column vector of the incident impulse functions at the time kAr. (b, is the column
vector of the scattered output wave pulses at the time kAr. G, is the discrete Green's function
for an arbitrary boundary with N boundary nodes. It describes the relation between the incident
and the scattered wave amplitudes in the boundary ports.

For the half-plane. the boundary is given by m=0and n=—x__. .~ 1.0.1..... Therefore equation
(31) yields

NI D SR ¢ (34)

o — ok kT

The boundary state evolution cquation (28) may be expressed by the discrete Green's function.
equation (34), via

{b)s = G la)g (35)
where the boundary field evolution operator is given by

1000
0000 . -
= G M0 (KO 3
6=l0 00 0 > 21“ lk:0.m) (k*:0.m'| (36)

00600

nao—x k-

In order to calculate the Green's function for the boundary of the half-plane. we start from an
impulsive excitation at n'=0, &'=0 given by

1
0
ta)B.k";n = 0 {0,0.0) (37)
0
and obtain
1
- e 0
b} = 2 2 0 «G o k:0.n) (38)
T Y S
0

Our result will be the Green’s function ,G,,.
Mapping equations (28) with (29) and (37). (35) with (36) and (37) to configuration space by
multiplying both equations from the left side with (k;0.n]. we obtain
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{k;0,n|bdy = (0~n}SBI (' Si)* T Sy 0 10.0)

U

(k:0.nlb)g =

o e R e

where we have used
(kiT'i()) =8,

39

(40)

(41)

so that only one term of the Neumann series in equation (29) contributes 10 (G,,, if we restrict

ourselves to k=2,

With this result, we consider equation (29) and formulate the main part of the problem that

means the operator (T I 3;;) recursively
e oy =T T Syla,

where
lay = “ i)

With the projection operators Py and Py, given by
[0 000
0100 .

E W0 e

001 0 i
0001

(1 0 0 0]
0ot 0o d
" 0010 g’l;;‘ lkm.n) (koo

0001

il

P,

and
000
000 ,
X |k:0.m) (k:0.}

1

0

0000
0000

Py

i

it yields for the operators Sgg, Sui. S;p and §y;:

-4 000
00600
= k',(). k:O-
% 0000 2: n) (k:0.n|

0000

(42)

(43)

(44)

(45)

(46)
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and assigning k=k’—1. we obtain the following system of partial difference equations by mapping
equation (42) to configuration space

k+l[al]m+l.n = é(k[al]m‘n - k[azlm.n + k[aJ}m.n + k[a4]m.n) (53)
wrt[@i]mn = 5("*[01]»”1.,. + @z in + d@slmer o + dda)mern) (54)
k"l[al]m.rﬂ'l = i(k[al]m.n + k[azlm.n + k[aJIm.n "kla4]m.n) (55)
ketl@ilmnt = 4l@i]mn + l@2)mn = l@3kmn + ilashn.n) (56)
for
k=0.1.2,.=
n=—-x_-101,.. %=

The initial conditions are given by

ol@i]io =4 of@aoy =} (57)
olaso.-1 =} allother m.n: fa],,, = 0 (58)

As the space is not bounded with respect to n, we only need boundary conditions concerning m.
One boundary value is

daijon, =0 (59)
As we have a system of second order concerning m. we need another boundary condition.

Therefore we apply the Sommerteld radiation condition.!?
From equation (51). we obtain for the Green's function for £ = ¢

ke2Gn = wlao)o.n = § (if@2)o.n + @:)0.q + l@adon) (60)
This system of partial difference equations can be solved by transforming it to frequency- and

momentum-space. Concerning n. we consider .[a,},. . as the Fourier coefficients of the function

{ALE)

x

E(iladnn) = AlAAE)m = D iladmn€" (61)

with
& =exp2mjN (62)
Concerning m and k, we apply the Z-transformation'?

P3

umumm=W&mu=§”M«mv* (63)

with
v = exp 2wif (64)

and in analogy to equation (63) the Z-transformation with respect to m
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Y{[B:(£.1)]m} = [Ci{Em,v)] = 5‘_,0 [BAEV)]wn

with
n = expjk
As we have
E(a[a)mnz1} = lAi(E)] £

for a shift in the positive/negative direction of n and

¥4 {kH{A:(E)]m} = U[Bi(g‘u)]m -V "[Ai(g)lm
Y{[B.(&.¥)}n+1} = n[CLEM V)] = n[BAEW)y

for a left-shift of & and m. we obtain

2mCi=v=Ci = Cs + Cy + C,
2:‘C3 + [B()]() = - C| + C_’_ + C; + C_l

WEC, —v=C,+C,+ C3—Cy
ZZC4—v=C, +C—Cy+ Cy
where we have used the abbreviation
[Bolo = [B:)o + [Bilo + [Buln

This system of algebraic equations has the so'ution
1 2 2 2 s
Cr= 5 (28 = gy’ — v’ = 260° — EV° + 3En)

B() 3 a
+ [T]“ (Env* — v = mEv + €n)

1
Co= 5 (™ + g — Env® —2mPv? + £)

B 2 Foe]
- Lgng (207 - Eqv? — 02 — 8 + En)
G = 1%(2"\"" = 26n* = % — En? =t + Eny)

_ [B:}O (m3? — En?v ~ v + £n)

1
Cy= N (&v* — 203 = 26 + En2F — B’ + Enw)

- [213]‘0 (En?v* = nE?v — En'v + &)

with the nominator N given by

N =202 (8v — &) + 2q(28v* ~ v — £33 + v + £20 — 26) + 280 — 280°

39

(65)

(66)

(67)

(68)
(69)

(70)
(7

(72)
(73)

(74)

()

(76)

an

(78)

(79




40 P. RUSSER AND M. KRUMPHOLZ

For the inverse transformation with respect to m. we consider the function (', und rewrite equation
(78):

v [Bolo) (1~ &)

Com - o 2=
EY . , . 1 13 ) ‘
moamfe e o g )

(Bulo (£ ) 2602001

NI TSy 1 N
e e e e e "( - i)_, . (80)
nl—ln{v-fl—&" ! + 1
\ v 2 2
We assign
1 € i
Cosha=v*l’~2~zﬁ {81}
and
sinha = ¢y cosha — |
i 1 & 1y )
:c\;(vi—v—-i—?“ -1 (82)
with
1 for fMla} =0
C_{—-l for R{a} = 0 (83)
It yields
c.- Momeosha (v (B (1~ )
4 9t~ 2ncosha + | (1 =)
_ Jsinha
n — 2ncosha + 1 (&) (84)
with the function T(£.v) given by
£ — I + 4B — Sy — fg +2
HR ’ e
2(1 = v?) ( +~«—~§—~1~ :—l
\/ T2 2&)
—§v2#gv+§§2v~—§ ~;]§
+ (Bole / = (85)
, 1 & 1V
Z(I—V')V(U‘V‘v""z—j‘e) -1

The following correspondences are valid:!?

. Woncosha
Y {cosh am} 7~ Incosha ¥ 1 {(86)
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___msinha

Y {sinham} = (87)

n' = Incosha + 1

with m=0,1.2,....
Writing out the sinh(am)- and cosh(am)-function in exponential terms. we obtain for [B,}.,

[B.}n = 122 exp(+am) ((? * gt(z;'li) :l)— &), ET(E_.v))
[(v + [ Byla) (1 ~ .
« 12 exp(-am) g(-{'} LT eren) (88)

The Sommerfeld radiation condition means that for R{a} = 0. the terms with exp{ —am) and
for R{a} = 0, the terms with exp(+ant) must vanish because in passive media. exponentially
growing solutions do not correspond to physical solutions. In both cases we obtain

(l_ritﬁr{‘ljﬂ]l‘l)(l - E") - I(&.V’ (8())

2L~ 7

and for {Bu}y

- \(\ - f - cnsﬁf -1

[Bu(8.v)]u = vi = 2ugost + |
20— 2vicosy - v+ v
T W —lvcosg -1 (90)
for m=0.1.2....x with
. i 1y
c059=c052m\’=5(§+8] 91)

We only need the boundary value {B(0.v)] to calculate ,G,. because with equation (60) it vields
k26, = k{a(}lt).n =X H(Z! ({Bn(gv)ln}) {92)

for k = 0. Of course. the result for [By],, is the same, if we consider the functions C,. C, or Cs.
The transformation back to time-space!” can be achieved by

1 .
JA4A0)],, = 2mj i [Bi{8. v} vt dy (93)

where C is a closed curve in the complex v-plane which surrounds the unity-circle. Integration
must be taken in anticlockwise sense.
Owing to the orthogonality relation

1
f EMI "dN =3, (94)
0
the inverse transformation from momentum space to configuration space concerning n 1s given by

X [AdO) o} = al@)mn = 2-!- fz {A(8)].. exp(jOn) dO (95)
T Jo

As By(E,v) is an even function of 4, it yields with equations (93) and (95) for (faq}o..
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. k-t
v eoe P 1 cosrf vt dadv

LfLf -y _
__éc‘l;l. ;?:'ivcosé_ﬁcos"e"k de dv

(96)

where we have used
§ (analytical function)dv = 0
-

For the evaluation of the two integrals I, and /.. we can restrict ourselves to the case n = }
because

daofon = slauo.-n (97)

With!*
T cosnde _mv v 98
b V= 2vcosB + 1 - 98)

for v > 1. n = 0 and

iy s ©9)
we calculate
b= Bnes = By (100)
For the integral /,, we apply'®
1

e = ) §PYx) (101)
v’l +2px +p= (=0

for [p) < 1 and || = 1 and'®

1~ p? ’
At 3 +
oyt T 1 2glcoskx (102)
for jp| < 1.
With the integral representation of the Legendre polynomials'’
1 " de P, =0
2—‘§ B d = On(-‘) r.m'" ) (103)
ey - 2 + 1 orn <t

where C’ is a closed curve in the complex v-plane which encircles the unity-circle in anticlockwise
sense, we obtain
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Iy = gesln — wid,

k+1
+ 20 ik—l-;lnvZW‘ - * k*l—;lnwj + * kvl—;ln*Z‘l
j-
*,
+ 2 *k-/'ln-bl—/ - é k—,ln~l—/ + ik«[’m—.\—; (104)
=0

where the function ./, is defined by

3

da=2 % f P(cos? 8/2) P,_,(—sin? 8/2) cos n6 dB (105)
L]

t=@

To calculate ,/,, we expand P,(cos® 8/2) and P,_,(—sin? 8/2) in terms of cos® 6/2 with the help
of References 18 and 19:

&k -1 -I+r
Py {(~sin®0/2) = (- 1)*~/ Z < ) ) (—4) (cos” 8/2)* (106)
=iy
wal 2 =2
P/(cos* 6/2) = é, Z (- l)‘( ) ( / "S) (cos® 8/2)¥ 4 (107)
=4
We substitute 8 = 2y, apply the integral®
o[ 2 )
72 n+ —-
cos £ cos 2mi dt = nmm forn = m (108)
o 0 forn<m

and obtain for the function ./,

d=23 58 s () (M7

=} =0 r=0

X(Zr)(k—l+r)(21—4s+2r) (109)

r 2r I-2s+r—-n
Combining the two integrals yields an algebraic expression for the discrete Green's function

«Gn =%8k.n+l _isk,n-l + 4 adn — b ioady

k=1

+ E() é k-—l—/IrnZ*f - i k-l—,1n+/ + 4 k—t—;ln-l»,
j=
+ E ék—-l—i’n*l—l - % k—2--i1n—l—j + * k“Z—[ln~5-/ (110)

J=0

for n=0,1,2,...> and k=23,4,...x. Because of equation (97) we have for n < 0:
«G_n=1Gan (111)

As already remarked, the general Green's function for an excitation at the time k&’ in the boundary
node n’ is obtained by the transition

an”k—k‘Gn‘n‘ (112)

In Figure 5. .G, is depicted for n=-9, ...,~1.0.1..... 9: k=12, ..., 10
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Figure 3. Values of the Green's function

5. CONCLUSIONS

In this paper. the TLM-method has been represented in the Hilbert space. The Hilbert space
formulation allows the derivation of general algebraic expressions for the field evolution without
having regard to the individual geometric conditions. Geometrical structures may be described in
a general way by projection operators. A further advantage of the Hilbert space formulation is
that the powerful methods of functional analysis®' can be applied. General investgations of
operator equations concerning the existence and the convergence of the solutions are simplified.

The Hilbert space formulation was used for deriving general algebraic expressions for the space
and time discrete field evolution. From the local operator equations governing the time evolution
of the field state vector. the non-local operator equation describing the time evolution of the
boundary state vector was derived.

First applications of this method were demonstrated in calculating the discrete Green's function
for the half-plane.
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SPATIALLY WEIGHTED NUMERICAL MODELS FOR THE
TWO-DIMENSIONAL WAVE EQUATION: FD ALGORITHM
AND SYNTHESIS OF THE EQUIVALENT TLM MODEL

N. R. S. SIMONS AND A. A. SEBAK

University of Manitoba, Winnipeg, Manitoba. Canada. R3T IN2

SUMMARY

In this paper a new TLM model for the two-dimensional wave equation is introduced. It is synthesized
directly from a FD algorithm. The FD aigorithm is second-order-accurate in both space and time. and is
explicitly time-stepped. The spatial derivatives in the FD algorithm are approximated by the weighted
combination of two standard central difference stencils. one oriented as usual. the other rotated by 45° with
its arms extended by a factor of (2)!'2. The TLM model is realized as the weighted connection of two original
models (with the same geometrical configuration as the FD algorithm). The weighting in the TLM model is
accomplished by using a variable intrinsic impedance for specific elemental transmission lines. The FD and
TLM methods possess identical dispersion relations if the former 15 operated at its upper fimit of stability.
Therefore, under these conditions both represent identical models for the simulation of wave propagation.
The propagation characteristics of the new model are investigated and the conditions for approximate
numerical isotropy are provided. The numerical implementation {scattering matrix and transfer event) is
described. To validate the new model. the calculation of cutoff frequencies of various modes in rectangular
waveguide is performed. Comparison with analytical resuits (for an unfilled waveguide) and other numerical
results (for a waveguide partially filled with a dielectric) validate the implementation of the model.

1. INTRODUCTION
The numerical techniques discussed in this paper are capable of solving arbitrary two-dimensional
electromagnetic field problems. [f problems independent of the :z-direction are considered.

Maxwell's equations are reduced to two independent sets. one of which is given by,

AE. _ aH,

WM (1a)
aE. _ _ O,
P Y (1b)
AH, oH, AE.
™ 3y =gE.+¢ Py (1c)

where E, and H, are the electric and magnetic fields. respectively (with p = x. y, or z) and ¢.
i, and o are the permittivity, permeability and conductivity of the medium of interest. respectively.
Equations 1 can be combined to yield the two-dimensional wave equation in E_,

P’E, a:__{—ﬂ f)_E"£+8 3_25:‘ {2)
ax2 | gy TRy TER G

The numerical techniques presented in this paper are developed from discrete approximations to
(2) rather than (1).

Johns and Beurle introduced the transmission-line matrix (TLM) method in 197] as a technique
which utilizes the equivalence of voltages and currents on transmission lines to electric and
magnetic fields in space.! An orthogonal grid of transmission lines represents a physical model

0894--3370/93/010047-19%14.50 Received 5 November 1991
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which approximates (1) or (2). Hoeter:~ presented recent applications and exlensions of the
method. Another numerical technique used exteasively in the computational electromagneucs
community is the finite-difference time-domain (FD-TD) method introduced by Yee' and
extended by others.® Both the TLM and FD-TD methods are capable of providing approximate
solutions to the time-dependent form of Maxwell's equations. In their most basic forms, both
utilize regular rectangular grid structures and explicit time-stepping. Under certain circumstances
both methods represent identical models for wave propagation. For all cases in which an equival-
ence between a TLM model and FD algorithm has been established. the TLM model corresponds
to the FD algorithm when the latter is operated at a specific location in its stability runge.>®

Recenilv.® the equivalence of the original TLM model' and the two-dimensional Yee atgorithm®
is established. In Reference 7 the equivalence of the three-dimensional expanded node” and the
three-dimensional Yee algorithm* is established. In Reference 8. models of (2) based on hexagonal
(rather than rectangular) computational grids are investigated. a TLM model is presented and its
equivalent FD algorithm derived.

In general. the finite difference (FD) method can be applied in various v a's to approximate
{2). Grid structures and the accuracy of the difference formulas can be varied. and different time-
stepping schemes can be used. The purpose of this paper is to synthesize an equivalent TLM
model directly from a FD approximation of (2). The general approach can be extended to the
synthesis of other TLM models from FD algorithms.

In the following section. the FD algorithm is presented s a weighted connection of two Yee
algorithms.* one oricnted as usual (arms of the spatial stencil oriented along the x-y axis). the
other rotated by 45° with its arms extended by a factor of (2)' . The dispersive characteristics
and stability criterion of the algorithm are derived. In section 3. the equivalent TLM modei is
presented. Based on the relationship established in Reference 6. the equivatent TLM model is
constructed from an interconnection of two original models. One onented as usual {elemental
transmission lines oriented along the x-v axis). the other rotated by 45° with its arms extended
by a factor of (2)'2. The weighting is accomplished through the use of a variable intrinsic
impedance for specific elemental transmission lines. and synchronism is maintained by increasing
the phase velocity along the diagonal elemental transmission lines. The relationship between the
FD algorithm and TLM model is established through the equivalence of propagation characteristics.
the most fundamental method for establishing the relationship between a TLM model and another
numerical method. The TLM model and FD algorithms represent identical methods for the
numerical simulation of wave propagation if the latier is operated at the upper limit of its stability
range. In section 4. the propagation characteristics of the models are investigated. For the
appropriate selection of the weighting factor, the propagation characteristics become approximately
isotropic (i.e.. the directional dependence of the numerical propagation velocity is removed). This
allows the model to be used in conjunction with the velocity error cofrection technigue described
in Reference 8. In section 35, the numerical implementation of the new model is described. The
scattering and transfer events are presented. The traditional application of calculating cutoff
frequencies in rectangular waveguide is used to validate the model. Conclusions and a discussion
of the new TLM model are contained in section 6.

2. FINITE DIFFERENCE ALGORITHM
Consider the following semi-discretization of (2).

E{x+Aly) - 2E (xy) + E..(x—Al.y_) .

arz
E,(xy+Al) = 2E(x,y) + E,(x,y=Al & E,
(x.y+al) A(jzy) (xy=ah) _ ., L (3)

where the spatial derivatives are replaced with second-order-accurate central difference approxi-
mations, we assume o = (), and the right-hand side of the expression is evaluated at the spatial
location (x.y). The stencil for this spatial discretization is shown in Figure 1. We assume a uniform
grid spacing of Al in the x- and y-directions,

FD approximations to the wave equation introduce numerical amisotropy and dispersion (i.e.,
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Figure 1. Second-order-accurate. central difference stencil used to approximate the spatial derivatives in the wo-dimen-
sional wave equation

the dependence of the numerical propagation velocity on the direction of propagation and fre-
quency content of the signal). To reduce the numerical anisotropy present in the semi-discretization
(3), Vichnevetsky and Bowles'” proposed the weighted combination of two finite difference
approximations to the spatial derivatives in (2). as illustrated in Figure 2. This semi-discretization
can be expressed mathematically as.

h 3y — Y ) — g
(1-k) {E:({t_él_-..% )~ 2Exy) + E(x=3Ly)
AP
¢ Elry+al) = 2E(xy) + Eley—2l ’}
AL
+k {E(if‘il.y*'\“ 7 2E(xy) # ELx-Aly-Al)
(,247)?
+ Elxtaly-al) - 2E(xy) + Efx-aly+Al )}
(\2Al)?

Figure 2. Weighted combination of two 5-point stencils
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where & is a weighting factor restricted between zero and one (and again the right-hand side of
(4) is evaluated at the spatial location (x.y)). This scheme uses the same grid as the semi-
discretization (3) and has the same memory storage requirements.

With the appropriate selection of k. the propagation characteristics of (4) become isotropic i.e..
the propagation velocity becomes independent of the direction of propagation. In this paper we
investigate time-dependent rather than time-harmonic solutions of (2). Therefore approximation
of the temporal derivative in (4) is required. Using a second-order-accurate central difference
approximation. (4) becomes,

(1-k) {E:(x+Al.y) - ZEZA(;;,}') + E.(x-AlLy)

E.(xy+Al) = 2E.(x¥) + E:(x.y~A1)}
¥ Al

k {%,(5 +aly+Al) = 2E.(x.y) + Eix-Aly-Al)

(\2Al)?
4 B+ My=Al) = 2E.(x.y) + E(x—3lLy+31)
(y2A0)?

{5)

ElMxy) = 2E x.v) + EL¥(x.y)
=gp = oDz T e N

Ar-

where A¢ denotes the time step. and the left-hand side of (5) is evaluated at time 7. (5) represents
an explicitly time-stepped finite difference algorithm for the solution of (2). We classify this
algorithm as an explicitly-time-stepped. second-order-accurate in time. and geometrically weighted
second-order-accurate in space. FD algorithm. Trefethen'! has investigated this algorithm and
determined the conditions for approximate numerical isotropy.

The dispersion relation for a numerical method vields the relationship between the dispersed
(or numerical) and mathematically exact quantitics. We use the notation of Vichnevetsky and
Bowiles.'” where dispersed quantities are denoted by a(*) superscript and physical (exact) quantit-
ies are otherwise unscripted. In the following section. the dispersive analysis of the equivalent
TLM model is outlined. It is necessary to distinguish the quantities associated with the elemental
transmission lines of the model from both the numerical and physical quantities. We use an (/)
subscript to denote elemental transmission line quantities. A monochromatic numerical plane
wave propagating through the numerical mesh at an angle & to the x axis can be expressed as.

Ez = E“e]wl + B (xcosd * vsind) (6)

where 3* represents the numerical phase constant. Frequency is regarded as an absolute quantity
defined in terms of numerical or exact quantities,

¢ BT _c_cB
f')\‘ r a2 ™

where ¢* and \* are the numerical propagation velocity and wavelength. respectively: c, A, and
P are the exact propagation velocity, wavelength and phase constant. respectively (¢ = (cpu)~V?).
Substitution of (6) into (5) yields the dispersion relation for the finite difference algorithm,

k sin? B Al(cos & + sin d) + sin? B*Al{cos & — sin d))}
2 2 2

,B*Alcosd = B*Alsin nb} A wM
2 4_,_“,...._5_._.,_. +gipt T ———— ) = R

(8)

+ (1~-k) {sin 5

Expression (8) describes the fundamental manner in which plane waves propagate through an
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infinite FD grid. Given a spatial and tempuial discretization (Al and Af respectively), frequency
of excitation (w), direction of propagation (). and the weighting factor (k), the numerical phase
constant (B*) can be obtained from (8). This value can be compared to the exact physical phase
constant to determine the amount of dispersion introduced by the algorithm. Therefore. (8) is a
fundamental representation of the fidelity of the algorithm as a method for the simulation of wave
propagation.

The stability criterion for this algorithm (obtained using the Von Neumann method. discussed
in Reference 12) is given by,

Ats ——= — (&2

3. TRANSMISSION-LINE MATRIX MODEL

3.1. Synthesis

We now synthesize a TLM model equivalent to the FD algorithm presented in the previous
section. The FD algorithm is constructed from the weighted combination of two second-order-
accurate central difference stencils. one oriented as usual (arms of the stencil located along the x
and y axis), the other rotated by 45° with its arms extended by a factor of (2)">. It has been
demonstrated that the original TLM model' and the FD algorithm (3) (with tempral derivatives
approximated by a second-order-accurate central difference approximation) are e juivalent.® There-
fore, the new TLM model should consist of the weighted combination of twe original models.
One oriented as usual (with elemental transmission lines oriented along the x and y axis). the
other rotated by 45° with its arms extended by a factor of (2)12. The basic geometry of the model
is shown in Figure 3. The new model is realized as a shunt connection of transmission lines (as in
Reference 1). A mesh of nodes is provided in Figure 4. Note that a direct electrical connection
between diagonal and axial transmission lines exists only at the centres of nodes, located at even
multiples of Al in both the x- and y-directions (denoted by the black dots in the figure}. To

Al Al
—— PP

Al + Al

YL
Al

Figure 3. Basic geometry of the new TLM model. created from the combination of two original models
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Figure 4. Mesh of new nodes. Electrical connections in the mesh are denoted by black dots. These spaual locations are
the centres of nodes

complete the model. the electrical characteristics of the e¢lemental transmission lines must be
determined.

The electrical circuit analogue of a weighting factor is a variable impedance. To implement the
ability to weight the two interconnecied original models. the diagonal and axial elemental trans-
mission lines are permitted to have different characteristic impedances. The intrinsic impedance
of the axial elemental transmission lines (i.e.. associated with the original model with elemental
transmission lines along the x and vy axis) is Z,, and the intrinsic impedance of the diagonal
transmission lines (i.e., associated with the original model rotated by 45°) is mZ,, where m is the
impedance weighting factor (0 = m < infinity).

In the evaluation of the FD algorithm (5), communication of information between spatial
locations in the axial direction takes place at the same speed as communication of information
between spatial locations in the diagonal direction. Therefore. propagation along diagonal elemen-
tal transmission lines should be (2)''? times faster than propagation along the axial elemental
transmission lines. or

vi= \:2_ v} (10)

where vi refers to the propagation velocity along the nth elemental transmission-line. j = 5-8,
and i = 1-4. A beneficial consequence of (10) is that the synchronism of voltage pulses is
preserved in the new model. The electrical and geometrical description of the new madel is
complete. )

3.2. Propagation analysis

The topology of the model is provided in Figure 5. To model a medium of arbitrary permittivity,
an open circuit stub is added to the centre of a TLM node.” The new model is the weighted
combination of two original shunt nodes. Therefore, to maintain consistency, two open circuit
stubs are added. One of length Al/2 and admittance Y,/Z, (associated with the shunt node with
elemental transmission lines along the x and y axis), the other length Al/(2''2) and admittance
Yo/mZ, (associated with the rotated shunt node).

The propagation analysis of the model proceeds in the same manner as performed in References
6, 8 and 13. Superposition and transmission-line theory yield the characteristic equation which
describes the behaviour of voltages on the model,

2(m+l)(ZcosB,Al-Yosinzg?l)=m2v,+ZV, (11)

=1 j=5
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6 3 7 i’71 fori=1-4
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Figure 5. Complete electrical and geometric description of the new model with permittivity stubs

A monochromatic numerical plane voltage wave propagating through the numerical mesh at an
angle & to the x axis can be expressed as.

V_. = Vnepwlﬂﬁ‘(rcnsa *vNnb) (12)

where the parameters in the exponential term of (12) are as defined in section 2. Substitution of
(12) into (11) yields the dispersion relation for the TLM model.

sin? B*Al{cosd +sind) +si

.B*Al{cos b ~sind)
3 n* - *'*‘§-~~'-~-~~>
* .B*Alsind 1 \ !
m {smz B_é!_zsﬂ + sin’ @,,‘_;!,L - 'z'_} (4+Y,) sin? @,rg (13)

Expression (13) describes the fundamentai manner in which plane waves propagate through an
infinite TLM mesh. Given a spatial discretization (A/l). frequency of excitation (described through
B,), direction of propagation (d). and the electrical properties of the model (m and Y,,). the
numerical phase constant (B*) can be obtained from (13). This value can be compared to the
exact physical phase constant to determine the amount of dispersion introduced by the model.
Therefore, {13) is a fundamental representation of the fidelity of the model as 2 method for the
simulation of wave propagation.

3.3. Equivalence of the TLM model and FD algorithm

We now establish the equivalence of the TLM and FD methods and demonstrate that both can
represent identical models for wave propagation. This is accomplished by determining the con-
ditions for which (8) and (13) are equivalent.

The term B,Al in the right-hand side of (13) can be re-expressed as wAr by noting the following
relationships,

o

Bi=7% (14a)
\ = 2 (14b)
(1)
Al
w=g (14c)

{14b) is a direct extension of (7), (i.e.. frequency is considered as an absolute quantity and can
be defined in terms of exact, numerical. or elemental transmission-line quantities). If we divide
the FD dispersion relation (8) by k/2 we obtain,
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sin? B*Al(cos ¢ + sin ) + sin? B*Al(cos & — sind)

2 2
2(1-k)[ . ,B*Alcosd . . B*Alsind]  2A7 . . wds
t {sm + sin 3 = koA S 3 (15)

(15) and (13) have fundamentally the same form. Equating coefficients of the left-hand side of
(8) and (13) yields the relationship between the TLM and FD weighting factors,

2(1-k
m= -(-'I—(‘—) (16a)
or
2
k=—3 (16b)
Equating the coefficients on the right-hand side of (15) and (13) vields,
9
0= e %’ (17a)
VE(m+1) (4+Y,) &
substitution of (16a) into (17a) yields.
=2 Al (17b)

V2K (47 ¥

or if we desire ¢ in terms of TLM model parameters alone. substitution of (16a) and (14c) into
(17b) yields,

=) Hmt2) (17c)
TN E+vy)
If the FD algorithm is operated such that (17b) is satisfied. the dispersion relations for both are
identical. and therefore the two methods fundamentaily represent identical methods for the
simulation of wave propagation.

It is interesting to note that for the condition Y,, = 0 (a ‘free space’ TLM model), the condition
(17b) corresponds to the upper limit of the FD stability range. As was found for the original node
and the Yee algorithm,® the TLM mode! and FD algorithm are identical when the latter is operated
at the upper limit of its stability range. This was not the case for the hexagonal TLM and FD
methods.?

If we return to the context of modelling electromagnetic phenomena. we can establish the
relationship between the admittance of the open circuit stub and the material properties of the
medium modelled by the entire model. The physical propagation velocity is defined as.

PR S (18)
SEae T TN TN

where £, and p, are the relative permittivity permeability. respectively and €, and p,, are the free
space permittivity and permeability, respectively. Relating this to the propagation velocity in the
TLM model (given by (17¢)), we obtain,

1 [ 2m#+2) Al
———  N{(m+1)(4+Y,) At (19)

v EcLoleito

If we consider the case ¥, = 0 to represent free space, i.e., g, = p, = |, (19) becomes,
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1 (mr2) ar
Eopo  2(m+1) Ar2

(20)

The relative permittivity and relative permeability are related to the stub admittance Y, by,

c,u,=(l + Yf) (21)

4. PROPAGATION CHARACTERISTICS

Numerical models for wave propagation represent a discretized medium that is both dispersive
and anisotropic, i.e., the propagation velocity of waves in the numerical mesh depends on both
the frequency content of a signal and the direction of propagation. This undesired effect is referred
to as velocity error and is determined from the dispersion relation for the particular model. The
ratio c*/c (the ratio of the numerical propagation velocity to the physical propagation velocity).
can be used as a quantitative measure of velocity error. The TLM dispersion rela ion (13) can be
rewritten as,

Al ,
sin® w(cos & + sin d) ¢ T sin® w(cos & ~ sin &) ;\\f
{ - Al Al
+ mysm-mwcosd , + SN wCos d
A A
ml Am+2) Al

2 (4+Y,) sin" (m+1)(Yo+d) &

(22)

Given the frce space discretization ratio (A//A). direction of propagation (). and the electrical
properties of the model (m and Y,)), (22) can be searched to determine the dispersed discretization
ratio (A//A*). Given Al/X and Al/A*. the ratio ¢*/c can be determined from.

c* AN
PERVIE (23)

In Figure 6(a), {b), (¢), (d), (e), and (f), c*/c is provided as a function of ¢ for m = 900, 6. 4.
3, 2 and 0-01, respectively. For each case. contours for Al/A = 0-10. 0-20. 0-30, and 0-35 are
provided (Y, = 0 for all cases). Note that in light of the equivalence established in section 3.3.
Figure 6(a), (b), (c), (d), (e) and (f) are applicable to the FD algorithm provided the FD
algorithm is operated at its upper limit of stability. &, = p, =-1 and k& = 0-002217. 0-25, 0-333,
0-4, 0-5, and 0-995, respectively.

In the limit as m approaches infinity. the new model is equivalent to a mesh of original nodes'
with elemental transmission lines oriented along the x and y axis. In Figure 7. c¢*/c is provided as
a function of ¢ for the original model' (for Y, = }). As expected the contours of Figure 7 and
Figure 6(a) are indistinguishable. In the limit as m approaches zero, the new model is equivalent
to the original model rotated by 45° and mesh spacing extended by a factor of (2)'*. In Figure
8, c¢*/c is provided as a function of ¢ for the original model rotated by 45° and mesh spacing
extended by a factor (2)2 (for ¥, = 0). As expected the contours of Figure & and Figure 6(f)
are indistinguishable.

For moderate values of m, directions for propagation with no dispersion do not exist with the
new model. From the results of Figure 7, we note that no numerical dispersion exists for waves
which propagate diagonally through the mesh (¢ = 45° + 190°. n = 0, 1. 2. 3). Numerical
dispersion is maximum for axial propagation (¢ = n90°, n=0. 1. 2, 3). For the rotated original
model. the complementary situation is present. No numerical dispersion exists for (& = n90°. n
=0, 1, 2, 3), and numerical dispersion is maximum for (¢ = 45° + n9%0°, n = 0. 1. 2. 3). From
Figure 6(b)~(e) we note that the new model blends the propagation characteristics of the original
and rotated original models. Therefore. propagation along the directions for maximum numerical
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Figure 6. Contours of ¢*/c for the new TLM model (Y, = 0) for {a) m = 900, (b} m = 6, (c)m = 4, (d) m = 3. (&)
m=2and (fim = 001

dispersion is improved, but directions for perfect propagation are eliminated. Therefore. in this
context the propagation characteristics of the original model are superior to those of the new
model.

However, from Figure 6 it can be noted that for the appropriate selection of the weighting
factor, the new model can possess propagation characteristics with approximate isotropy. The
appropnate conditions have been investigated in the context of the equivalent FD algorithm. 101!
The appropriate weighting factor for the semi-discretization (4) is k = -5 (see Reference 10).
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Figure 6. Continued

For the full discretization (5), Trefethen!! has determined a weighting factor of k = 1/3 provides
isotropy to order (Al)* (note that the difference in & for the semi-discretization and full discretiz-
ation is a result of effect of temporal discretization in the later). Therefore, isotropy to order
(Al)* should be obtained from the new TLM model for m = 4.0 (using (16a) to convert k to m),
as shown in Figure 6(c).

Obtaining approximate numerical isotropy is equivalent to reducing the dependence of the
propagation velocity on the direction of propagation. Consider the simulation of a homogeneous
problem that employs a regular mesh. If the numerical propagation velocity is independent of the
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Figure 8. Contours of ¢*c for the original TLM model rotated by 45° and mesh spacing extended by a factor (2)'7.
Contours are indistinguishable from those of Figure 6(f}

direction of propagation, the amount of velocity error at a given frequency can be accurately
estimated from the dispersion relation. Therefore, after the simulation is complete. the velocity
error can be corrected at each output frequency. This method was used in Reference 8 (with the
hexagonal two-dimensional TLM model) to correct for the cutoff frequencies in a rectangular
waveguide with no a priori assumption regarding the directional dependence of a particular mode.
In this context the propagation characteristics of the new model can be considered as superior to
those of the original model.!

In Figure 9, the propagation characteristics of the new modei and the hexagonal TLM model®
are compared. The ratio ¢*/c is provided as a function of the physical discretization ratio (Al/\)
for propagation directions & = 0°, 22:5°, 39°, and 45° for (a) the new model with m = 3.0, (b)
the new model with m = 4-0 and (c) the hexagonal TLM model. The results contained in the
figure indicate that the hexagonal model is superior to the new model in terms of both the cutoff
frequency of the model, and the degree of approximate isotropy. Therefore. in the context of
isotropic models for the simulation of wave propagation, the hexagonal model is preferred.

An advantage of the new node is that it is realized on a regular grid with equal spacing in the
x- and y-directions (Al). The hexagonal model is also realized using a mesh with equal inter-nodal
spacing. However, owing to the nature of the hexagonal grid. the spacing in the x- and y-directions
is unequal, Al and (3)"/2Al/2, respectively. This creates a disadvantage for the hexagonal model
in the modelling of structures with regular geometric features.
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5. NUMERICAL IMPLEMENTATION AND RESULTS

5.1. Scatiering matrix

In the previous sections we have examined some of the theoretical aspects of the new TLM
model. We now describe the numerical implementation of the model in terms of the traditional
scattering and transfer events.>* TLM algorithms operate by simulating the progression of voltage
pulses as they are scattered throughout the mesh of transmission lines. Applying the appropriate
initial conditions and reflection coefficients {to model boundary conditions) the transmission-line
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simulation becomes analogous to an electromagnetic field problem. The implementation of the
new model follows the same procedure as all other models, i.e.. scattering of incident impulses
at the junction of nodes and transfer of the retlected pulses to adjacent nodes. The algorithm can
be expressed formally as.

V=S8V (24)
and
eV =0V (25)

where V' and V" are the vectors of the incident and reflected voltage pulses at all nodes at time-
step k. S is the global scattering matrix describing the interaction of pulses at all nodes in the
mesh, and C is the connection matrix describing how nodes are connected (and includes the
boundary conditions for the particular problem). These two equations include all information
required to perform the simulation.

The nodal scattering matrix can be assembled by examining the reflection and transmission
coefficients of a voltage pulse on each of the ten elemental transmission lines of the model. A
voltage pulse on the ith elemental transmission line “sees’ a reflection coefficient of.

. Z, - Z

r=5" % (26)
Zy+ 24

where Z, is the parallel combination of all but the ith elemental transmission line and Zj is the

intrinsic impedance of the ith elemental transmission line. The intrinsic impedance of the elemental

transmission lines {from section 3.1 and shown in Figure 5). is.

Z, fori = 1-4
- mZz, fori = 5-8 )
Zi= 2,/Y, fori =9 7
mZ,/Y., fort = 10

The associated transmission coefficient is,
T=1+T (28)

From (26)-(28), the nodal scattering matrix can be assembled as.

[ v, 1" ra b b b d d d.d f h] [v,"
Vs b a b bddddf h Vs
Vi b b abdd ddf h Vi
vy b b b addddf h v,
vsf _|b bbb dddt n|]|v 9
Ve b bbb dc d d f h Ve
vy b b b bdd ¢ d f h vy
vy b bbb dddc f h vy
Vo b bbb dddde b Vo
[ Via| b b b b d d d d f gj vy

where

_ " 2m—4-Ym+1)

T 44 dm+ Y (m+1)
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b= 2m
4+48m+ Y.,(”H‘l)
T2 dm = Yo(mt1)

4+ 4m + Y, (m+1)

2
T4+ 4m + Yo(m+1)
-4—4m - Yy (1-m)
44 dm+ Yy(m+1)
f_ szO
T4+ 4m+ Y (m+1)
_—4—4”1_ Yo(m—1)
4 +4m + Yy (m+1)
- 2Y,
4+4dm+ Y, (m+1)

The nodal transfer event is described by,

vi(ij) =vi(ij=1)

vi (i) = vi(i-1))

V(i) = vi(ij+1)

vi(ij) = vi(i+ly)

vi(ij) = vii-14-1) (30)
vi (i) = vi(i—Lj+1)

vE(ij) = vEi(i+1,/+1)

vi(ij) = vi(i+1j-1)

v (&) = v§ (i.f)

Vio (&) = via (i)

where (i.f) denotes the discrete (x.y) location of a node in the mesh.

If the TLM method is considered as a differential-equation-based numerical method for solving
(2), (29) and (30) represent the approximate model for wave propagation (in the same way the
FD method is considered as a differential-equation-based numerical method for solving (2) and
(5) represents the approximate model for wave propagation). The solution of a specific problem
requires the application of initial and boundary conditions. The treatment of boundary conditions
is an important subject for the practical application of the method. In this paper we are primarily
concerned with the development of the new TLM model as an approximate model foi "vave
propagation and establishing the equivalence with the FD algorithm. Therefore we do not treat
the subject of boundary conditions in detail. The traditional methods of specifying reflection
coefficients at locations half-way between the centres of nodes (in both the axial and diagonal
direction) should be applicable.?-* Potential users should be cautioned that the intrinsic impedance
of the elemental transmission lines is not always the same for this model and care should be taken
in the evaluation of the appropriate reflection coefficients for a specific boundary condition. The
method described by Chen et al.'* of enforcing boundary conditions at the centre of nodes should
also be applicable to the new model.

5.2. Calculation of cutoff frequencies

To validate the new TLM model, we investigate the traditional TLM application of the calcu-
lation of cutoff frequencies of various modes in a waveguide.?-> The cross-section of the partially
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Figure 10. The geometry of the waveguide cross-section analysed using the new TLM mode!

Table 1. Cutoff frequencies (in GHz) for rectangular waveguide

Mode New TLM model  Analvtical'* * difference
(1.1) 1-244 1-2490 04
(1.2) 1-784 1-8015 09
2.1 2126 21345 0-4
{1.3) 2:429 2-4605 13
{(2.2) 2-481 2-3983 0.7

Table II. Cutoff frequency (in GHz) of the dominant mode in par-
tially filled waveguide

€, New TLM model Finite element!® %% difference
2-5 1-054 1-063 -8
50 0-846 0-852 -7
10-0 0-614 (623 1-4

filled rectangular waveguide and the physical dimensions are provided in Figure 10. The walls of
the guide are considered to be perfectly conducting. To realize this boundary condition. reflection
coefficients of magnitude —1-0 are placed at locations half-way between nodes. A mesh spacing
of Al = 0-01 metres is selected, resulting in a total TLM mesh with 20 nodes in the x-direction
and 15 nodes in the y-direction. Calculations were performed such that the true physical cutoff
frequencies are obtained direcily from the simulation. Normalization for a non-free space medium
is not required. -

The TLM simulation yields the cutoff frequencies of TM modes. Table 1 contains the cutoff
frequencies for the first five modes for €, = 1-0 (Y, = 0). A total of 1000 iterations (i.c.. 1000A¢,
where At can be obtained from (17¢)) and a weighting factor of m = 6 was used. The TLM results
are compared to analytical resuits. '* The percentage difference is provided in the table. Reasonable
accuracy is obtained. In Table II, the cutoff frequency of the dominant mode is provided for ¢,
= 2-5, 5 and 10. As a comparison results generated by a finite element code are provided.!®
Again, reasonable agreement is obtained.

6. CONCLUSIONS

In this paper we have presented a new TLM model for the simulation of the two-dimensional
wave equation. The TLM model was synthesized directly from an FD algorithm!?-** as a shunt
connection of two-wire transmission lines. The new model is a spatially weighted connection of
two original models.! One oriented as usual, the other rotated by 45°. The weighting is
accomplished through the use of a variable intrinsic impedance for specific elemental transmission
lines. Synchronism is maintained by increasing the propagation velocity along diagonal elemental
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transmission lines. In general, the synthesis of other TLM models from FD algorithms is possible
using the same basic steps.

The relationship between the FD algorithm and TLM model is established through the equival-
ence of propagation characteristics. We feel this is the most fundamental method for establishing
the relationship between a TLM mode! and another numerical method. It is possible to demonstrate
that the TLM model satisfies the FD algorithm (by examining the scattering and transfer of voltage
pulses at a node and its neighbours). In Reference 17. the original TLM model was shown to
satisfy the two-dimensional Yee algorithm. To demonstrate the equivalence. the definitions for
magnetic ficld quantities in terms of voltage pulses were altered. Rather than define the magnetic
field components at the centres of nodes at each iteration. the magnetic fields were defined at the
intersection of nodes at half iterations. Chen et al.'® have recently reported a complete algorithmic
equivalence of two- and three-dimensional TLM models and FD algorithms. We regard the
calculation of field values from voltage pulses to be a post-processing task associated with the TLM
method. The basic algorithm (scattering and transfer of voltage pulses) operates independently of
these definitions. One of the often-quoted advantages of the TLM approach is the ability to define
field components at various spatial and temporal locations (as long as a certain consistency is
maintained). Therefore. we feel that establishing an equivalence between a TLM model and
another numerical method without specific definitions for field quantities in the TLM model.
is the most fundamental and rigorous. We accomplish this by demonstrating the propagation
characteristics of the TLM model and FD algorithm are identical if the latter is operated at the
upper limit of its stability range.

The propagation characteristics of the new modeil have been examined. For moderate values of
m. directions for propagation with no dispersion do not exist for the new model. Therefore. in
this context the propagation characteristics of the original model are superior to those of the new
model. However, an advantage of the new model is that for appropriate values of m. approximate
numerical isotropy is obtained. This allows the model to be combined with an error-correction
method to remove the contribution of velocity error from the results.® Comparison of the character-
istics of the new model to those of the hexagonal TLM model® indicate the hexagonal model is
preferred (in terms of both the amour.t of approximate numerical isotropy and cutoff frequency).
This conclusion is supported by analogous finite element (FE) studies. Consider the relationship
of the various FD algorithms and TLM models ( References 6 and 8, and section 3 of this paper).
and the relationship of the FD and FE methods.!”?" Based on these relationships. the original
TLM model' is analogous to using square quadrilateral finite elements of sides A/l; the hexagonal
TLM model® is analogous to using equilateral triangular finite elements. each triangle having sides
of Al and angles of 60°; and the new TLM model is in some way analogous to using right triangular
finite elements, each triangle having sides of Al. Al (2)! *A/ and angles 90°. 45°, 45°. Mullen and
Belytschko have determined that modelling with equilaterat triangles (analogous to the hexagonal
TLM model) is the optimum triangular discretization if isotropy is desired.”! This supports the
analysis performed in this paper.

Finally, the scattering and transfer events for the new model were presented and were applied
to the analysis of a rectangular waveguide partially filled with a dielectric. The cutoff frequencies
calculated using the new TLM model agreed well with both analytic and numerical finite element
results.

In 1976, Johns presented an interesting paper in which the original TLM model is described as
a discrete form of Huygens’ Principle.* Hoefer has continued this view and has provided a brief
historical review and description of the discretization process.> The hexagonal model can be
considered as a logical extension of the original model. The improvement in numerical isotropy
over the original model is intuitively obvious. The model presented in this paper could also be
described as a discrete form of Huygens' Principle. However, the moudel would have been
developed with a specific value for the weighting factor {presumably such that energy would be
scattered isotropically). While selecting a variable weighting factor may be of more theoretical
interest than practical value, the motivation for allowing this flexibility may not be obvious from
the perspective of a discrete form of Huygens' Principle.

The original model.' the hexagonal model® and the new model presented in this paper are
equivalent to FD algorithms that approximate spatial derivatives with second-order-accurate central
{*ference formulas. The difference between the various models is the geometric configuration
and weighting of the difference approximations. Future work will investigate the synthesis of a
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TLM model equivalent to an FD algorithm that approximates the spatial derivatives in the wave
equation with fourth-order-accurate central difference formulas.
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MULTIPORT APPROACH FOR THE ANALYSIS OF
MICROWAVE NON-LINEAR NETWORKS

M. 1. SOBHY AND E. A. HOSNY

Electronic Engineering Laboratories, University of Kent, Canterbury, CT2 7NT, U.K.
AND

M. A. NASSEF

Electrical Engineering Department, Military Technical College, Cairo, Egypt

SUMMARY

The state and output equations of the overall networks are derived from the state and output equations of
individual multiports and knowledge of the interconnections between them. A generalized lumped-distributed
L/D muitiport is described by its associated state. output and non-linear equations in the time domain. Any
network can be considered as composed of a set of multiports and independent sources. These equations
have been incorporated into a computer-aided procedure for the analysis of L/D networks. The procedure
can be used for the simulation of any non-linear microwave circuit and offers the facility of developing a
multiport equivalent circuit for any linear or non-linear device or subcircuit. Several examples are successfully
analysed using the developed general program.

1. INTRODUCTION

The analysis of non-linear dynamic networks by using state-space approach has been established
since the 1960s and well documented in many reference books.5* Computer-aided state-space
analysis of lumped and lumped/distributed networks has been developed.'+7% The capacitor
voltages (or charges) and the inductor currents {or fluxes) are usually chosen as the lumped state
variables. The reflected voltages at the transmission lines can be chosen as the distributed state
variables. In all these cases the state and output equations are established from the circuit element
values and the topology of the whole network.

It is highly desirable and convenient for circuit designers to consider the non-linear network
composed of subcircuits. These subcircuits are represented by functional blocks described by a set
of equations. In this case the formulation of the whole network equations starts from the top level
of the subcircuits (muitiports). The graph of the network is only describing the interconnection
of all network multiports.

Multiport representation is common for linear networks in the frequency domain where any of
the usual multiport parameters (x, y, A, g) or the scattering parameters can be used. When any
of these parameters are known, the topology and element values of the multiport are no longer
required. No such treatment has so far been available for non-linear networks. Non-linear networks
are usually solved in the time domain either by direct integration of the network equations,! by
using associated discrete circuit modelling (Spice) or by the harmonic balance technique.? In the
harmonic balance method the non-linear subnetwork is still solved in the time domain. It is then
a great advantage to develop a method of characterizing non-linear networks from their terminal
behaviour and treat them as multiports.

In this work multiports can represent networks with | \mped, distributed and non-linear elements.
Each multiport is represented by non-linear state and output equations and the overall network
is composed of a number of individual muitiports connected in an arbitrary fashion. The state and
output equations of the overall network are derived and solved in the time domain. Thus the
method enables the hierarchical development of non-linear networks. At the lowest level of
hierarchy the multiport equivalent is developed from individual circuit elements (linear and/or
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non-linear) using a tabular approach. At the higher levels only the muitiport equivalent is required.
Any number of hierarchical levels can be developed.

The present formulation gives separate differential, difference and non-linear equations for the
overall network and for each of the individual multiports. This leads to an efficient and numerically
stable algorithm. No difficulties have been encountered in analysing networks with very unequal
time constants such as microwave mixers.

The advantages of this approach are summarized below:

(1) A large network can be divided into smaller subnetworks and the equations for each subnet-
work are derived separately.

(2) A library of subnetworks can be developed and stored for future use without the need of an
equivalent circuit. This includes transistors, FETs, diodes, matching sections, filters and
couplers.

(3) The equations characterizing a non-linear device can be derived to match experimental data
without the need to develop a physically realizable equivalent circuit. This gives a greater
flexibility in modelling active devices.

(4) The subnetworks developed can be used in either a direct integration subroutine or a harmonic
balance subroutine.

2. THE GENERALIZED L/D MULTIPORT

A general multiport composed of individual multiports is shown in Figure |. The individual
multiports are composed of lumped. distributed elements and dependent sources. The lumped
clements are linear and non-linear resistors. capacitors and inductors. The distributed elements
are transmission lines coupled or uncoupled embedded in homogeneous or inhomogeneous media.
The overall network is composed of all individual multiports and independent sources. Each
multiport has current-driven and voltage-driven ports. These are ports for which either the current
or the voltage is considered as the input. The jth multiport is described by

= Ax + B + Biuj (1a)
y'=Cix! + Diw + Diuj, (1b)
Fi=Cix'+ D'w + D/, uj, (1c)
where
x/ = [x}(£) x5(0)], x{(¢) and x}(¢) are the lumped and distributed state vectors of the jth

multiport, respectively,

Independent
Voltage
) (m) _ ’
N
jth maltiport

Figure 1. General lumped-distributed non-linear mulitiport
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N _fdxit) T .

X vt xi(t + Ti}| . T, is the delay of :he kth transmission line,

u = [i{v,]T is the input vector,

v = [v{pilp]T is the output vector,

uf, is the vector of the controlling voltages and currents of the non-linear elements,
Fi = [fa(x/ /1, 1)]T is the vector of the non-linear functions,

A, B, ... are real matrices of the state and output equations of the jth muitiport,

and the subscripts cp and vp refer to the current-driven or voltage-driven ports.

With each non-linear lumped distributed multiport being represented by equation (1) we now
proceeded to derive the state equations of the overall network which consists of any number of
individual mulitiports.

3. THE NETWORK TOPOLOGY

The whole network is obtained by interconnecting ail multiports and independent sources. The
topology of these interconnections is represented by unconnected graphs. The edges of each graph
have to satisfy Kirchhoff’s laws. A forest is defined and Kirchhoff's laws can be expressed in the
hybrid form,

is 0 D Ve
= (2)
Ve —DT O ic
where D is the dynamical transformation matrix.**
. 5
Dvs.cp ' Dvx,vp ; D\'\.ca
D= Dcp.cp; Dcpyp Dcp.cs (3)

e e o e e e —

Dvp.cpl Dvp,vp H DvaCS

if = [ivs icp.tivp.f]T \ [Vvsvcp.lvvp.t].r
Ve = [vcp.cvvp,cvr:]T ic = [icp.civp.citai-r
and the subscripts f, ¢, vs. cs refer to the forest. coforest. independent voltage source and
independent current source respectively.

Let us define the following vectors

= [in-vaP.C]T! U = [V\'p.(icp.r:]T9 u, = [Vwics]T
yl = [vcp.fivp,clT’ and y: = [ivp.l‘vcpﬂc]r

where u; is the source vector containing all the independent voltage and current sources of the
whole network.

It should be noted that the independent voltage and current source edges must be always in
the forest and coforest, respectively. Without loss of generality, the maximum number of current-
driven ports of all multiports are assigned to the forest (D, ., = 0).

The following equations can be obtained from (2) and (3).

uy = Fyy, + Fauy + Fau, (4a)
Y2 =—Fyy, + Fau, (4b)
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where

0 i Dcp,vp 0 :Dcpﬂcp

Fi=|-mmmemdmmmm [ Fym oo - =

! [

~_sz.vp f 0 L ‘Dfpﬂp i 0 .

[ 0 gDcp“sl 0 Do ]

Fy= ———-—-'4!'—‘"“* and F}j-———~- 'f—-—

-_D—»‘;.vp 0 . "D\T-s.cp ; 0 .

Equations (4) are auxiliary equations which will be used in the derivation of the network equations
in the next section.

4. FORMULATION OF THE NETWORK EQUATIONS

The state. output and non-linear equations of the whole network consisting of a number of
multiports is written in the form.

&, = A0, + B, + B,,u, (5a)
¥, = Coxp + Dyuy + D, uey, (5b)
an = Clp“‘p + D|pup + D|n/7“n (SC)

where %, x,,, 4, 4, and F,, are real vectors. each vector contains the elements of the corresponding
vectors of all multiports (e.g. x, = [x'x*...x"|T, m is the number of all multiports). A,. B,, B,,.
c,, D,,. ﬁ,,,,, C,,,, D.,,. and D,,,,, are real quasidiagonal matrices. each matrix contains the elements
of the corresponding matrices of all multiports.

The state vector is rearranged to contain all the lumped state variables followed by the distributed
ones of the whole network. The vectors «,, and v, are also rearranged according to the forest and

coforest edges of the defined vectors u,. . v, and v>. Hence the foilowing relations are obtained:

x=Px, (0a)

u= P.u, {6b)
and

y="ry, (6¢)

where P, and P, are elementary transformation matrices. with element values of zcro or one,

w=[wu]". y=[yy]"

From (5) and (6) the overall network of multiports is described by

¥=A,x+ Bu+ B, .u, (7a)
v=Cx+ Dyu+ D,,u, (7b)
and
F,=Cy,x+ Dyu+Dy,u, (7c)
where
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Cp = PszPF,
Clp = Clprv

Dp = P:D‘,P;{.
Dy, =D, PT

an = P:'an
and D, = D,,,,

Equation (7b) is partitioned as follows,

pl npt

= X + u+ U,

yZ CPZ anZ
From (4) and (8), we get

Wold = WX + wall, + Wi,

Table 1. State-space representation of hasic lumped e¢lements
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(8)

(9)

Element Inputs Matrices of state and output equations
A ; B C D
R W=v —_ — - 'R
{
v - w =i — - | —~ R
Resistor
¢
!
_,..”_. =i 0 1.¢ 1 il
- -
Capacitor
L
0

- - ue - L2/t Mit 10
L2 v2 Mir L't 10

= LI LYI-M*
Non-ideal transformer
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Table [I. State-space representation of transmission lings

Element Inputs Matrices of state and outpul equations §
A B C D
;
v 0 -1 01 -2¥, 0 Yo 0] |
“= w2 -1 0 1o 0 -2, 0 Yo
i Le=l¥e [ 01 02, 20 z,0] |
e B " B 17 10 Z, 0 02 02 |
vl v2 3 . {
- - it 0 -1 01 2 0 z, 0] |
Transmisssica line u= v2 ] 10 Z, 0 0 -2Y, 0 Ys |
v (Y 0 2, =2, 0 Y, 0
=10 -1 0 10 0 2 0 Z,]
Z=1'Y. w=vi | [0 0] [~2¥. O] [¥.]
R ! | -1 0 ]
' ::j ’ |
vl ;
- d = , o1 0 -
Open-circuited stub u =il l l' 0 [Z..} fz 0] (2]
i Ze=liY, u = vl 0 -1 o [~2¥, 0] (vl
. -1 0 1
v ,
- . o 0 -1 0
Short-circuited stub w=il [l M ] ; [ZJ [z o (2]
]
where
F lu“FtDm _Fle:—F:
Wy =
._DpJ + F.Zer{ FZerl + Dp.‘.
[ FCa
wy =
L-FIC, - Coo
[F,
W,y =
[ Fs
[ Fanp
Wy =
FID,,, - D,
and [, is a unit matrix.
Finally, the network equations are obtained from (7) and (9).
£ =Ax + Bu, + B,u, (10a)
yv=Cx+ Du .+ D,u, (10b)
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Table III. State-space representation of linear controlled sources

Element Linear Excitation Matrices of state and output equations
relations inputs
{
A B C D
il
S,
¥
2 = ail it _ _ . 00
‘i vi=10 =1, a0
il i2
——
i2 = gvl vl — - 00
vi v2 i1 =40 u= [‘,2} | {g 0}
VvCCS
v2 = gvl 2 . _ _ 0B
2=9 v :Ll] 0 0}
!
il i2
gy r—<—
+ +
v2 = ril il _ _ _ 00
o 2 vi= u 12] ro
CCVS
Fn=ClX+Dlu!+Dlnun ) (l&)

where
A=Bwi'w + A,
B = B,wg'w:
B, = B,ws'wy + B,
C=Dwi'w, +C,
D= D,wj'w,
D,=Dw5'w,+ D,
Cy = Dywi'w, + C,,
D, = D,w;'w?

Dln = Dlpw(;lwl + D!np
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Table IV. State-space representation of basic non-linear elements

Non-linear current
source

Element Non-linear Inputs Matrices of state and output equations
relations
A|B|B, | CV{D|D,|C } D |Dy,
i . u=v
* i=f(v) un=‘—~——001001
14
u=i
Voltage-controlled w,=v | | {7 O po oo
resistor
‘ P u =y
‘@ v = f(i) el == =lo el oo
v
“mth =t =Jo it lotol
Current-controlled Uy =1
resistor
i +
T = 'L Vo
v = v =g(q) u =1 1 ) 0
_ - E E=gva. C)-vol u, = £ 0 C, v ! ( ! 0 !
Non-linear capacitor
i
* ill
= J i = f(d) u=>s 1
4 . . ( 1 0 1 0
_ L" J = f(l(), Lu)"‘lu M, = J 0 Ll; ) 0 1
Non-linear inductor
{
Y E=fraany | “Z0 0 f—tofolilolo]i
e u, = E
Non-linear voltage
source
i
g u=v
J = f(xuu,t) w,=J | |7 |~ 0 0 1 0 0 1
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Matching
Retwork
Phasing line D‘

% IF filter
° R
AR
v ) (3) (4) {5) (7)
Phasing Matching
"6 Rs —— 1ine [ Section [ O (9)
Hybrid 1.F.
v (2) ring (6) (8) Filter .-I
Lo ;
R Matching
S s Section % a0y &

{b) Multiport equivalent of balanced mixer

Figure 2. Circuit diagram and multiport equivalent of balanced mixer. (a} Schematic diagram of balanced mixer. (b}
Multiport equivalent of balanced mixer

The matrix w, may be singular due to the dependence between some of the lumped state variables.
Such dependence which is due to the interconnection of all muitiports can only arise under the
following conditions:

(1) The network has some cutsets consisting of only inductors and current sources.

(2) The network has some loops consisting of only capacitors and voltage sources.

(3) The presence of dependent sources in some special cases. This condition does not occur in
practical networks.

The dependent state variables can be eliminated by elementarv row and column operations on
the coefficient matrices in (9).

5. SIMULATION

A general computer program has been developed for the analysis of non-linear L/D networks.
The formulation of the network equations has been established by using sparse matrix techniques.
The solution of (10) can be obtained as explained in Reference |.

The explicit forms of the matrices of network equations, describing the devices and subcircuits
commonly used are implemented in the program. The advantage of the proposed method is that
the developed program deals with these circuits as multiports, describing their terminal behaviour
instead of dealing with their basic circuit elements. Basic linear and non-linear circuit elements
(such as resistors. inductors, capacitors. controlled sources and transmission lines) can also be
represented as multiports. The state space representation of these elements is given in Tables I,
II, Il and IV.

6. EXAMPLES

The developed program has been applied to several examples. In the following examples. the
circuit is partitioned into multiports using some of the implemented subcircuits in the program
such as diodes, MESFET’s and matching sections.
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6.1. Schottky diode balanced mixer

A balanced microwave mixer circuit using two silicon Schottky diodes DC1533G was analysed.
The local oscillator and intermediate frequencies are 7 and 0-144 GHz, respectively. The schematc
diagram of the mixer is shown in Figure 2(a). The network is divided into a number of multiports
and models of each muitiport, including the Schottky diodes, are developed and stoicd in the
program library. The overall network is then analysed as an interconnection of the multiports. as
shown in Figure 2(b). The equivalent representations of each multiport are given in Table V. A
higher level of hierarchy is also possible and larger multiport representations can be made if
required. The output waveforms before and after IF filter are snown in Figure 3. The variation
of the conversion loss with RF frequency is shown in Figure 4.

6.2. MESFET frequency doubler

A similar procedure has been used to analysc a 2:5 GHz frequency doubler. using a Plessey
P35-1105-1 MESFET. shown in Figure 5(a) and the multiport equivalent is shown in Figure 3(b).
The output waveform is shown in Figure 6. The output 1s further analysed and the fr:quency
response is obtained. The circuit has been built and tested and the theoretical frequency response
is compared with the practical measurements in Figure 7. Good agreement is shown between
measured and predicted results which gives contidence in the developed method.

7. CONCLUSION

Non-linear lumped-distributed networks can now be analysed in the time domain as an intercon-
nection of multiports. The overall network is divided into a number of subnetworks and each

3.
3.
m 3,
uw
~ 3.
S oa.
p}
3 2.
e.
o 8080
2
9.28:3 4
A (“ ;‘
/ f j
2.2841 4
8.6919 1
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!
B.28I5 T T T T 1 0 ~1
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Figure 3. Simulated output of microwave mixer
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Figure 5. Circuit diagram and multiport equivaient of frequency doubler. (a) Schematic diagram of frequency doubler.

(b) Circuit diagram and multiport equivalent of frequency doubler

subnetwork is characterized separately. A library of subnetworks can be developed from active
elements such as transistors, FETs, diodes, et.. with very little storage required. The non-linear
multiports can be used in either a direct integration subroutine or using the harmonic balance

method.
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Figure 7. Frequency response of frequency doubler
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AIMS AND SCOPE

Prediction through modelling torms the basis of engineening design. The computational power at the fingertips
of the professional engineer 1s increasing enormously and techniques tor computer simulation are changing rapidly.
Engineers need models which relate to their design area and which are adaptable to new design concepts. They
also need efficient and triendly wavs of presenting, viewing and transmitung the data associated with their models.

The Internatonal Fournal of Numencal Modelling: Electrome Newworks, Devices and Fields provides a com-
municaton vehicle for numerical modelling methods and data preparauon methods assocated with electrical and
electroric circuits and fields. It concentrates on numerical modelling rather than abstract numerical marhematics.

Contributions on numnerical modelling will cover the entire subject of electrical and electronic engineering. Thev
will range from electrical distribution networks to integrated circuits on VLSI design. and trom static electric and
magnetic fields through microwaves ¢ optical design. They will also include the use of eiectrical networks as a

modelling medium.

PRINCIPAL TOPICS

Pre- and post-processing of data

Electromagnetic field modelling trom d.c. 1o optical frequencies

Modelling of information networks. analogue and digitai circuns, power distribution
Modeiling of solid state devices, clectronic tubes. electrical components

Moving boundary problems. coupled problems

Network modelling. energy and moment methods, ¢lement and rav methods. graphs
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